Nanomechanical Mapping of Hard Tissues by Atomic Force Microscopy: An Application to Cortical Bone.
atomic force microscopy
biomaterials
cortical bone
elasticity
force mapping
hard tissues
nano biomechanics
nanomechanical mapping
tissue nanoindentation
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
26 Oct 2022
26 Oct 2022
Historique:
received:
22
09
2022
revised:
18
10
2022
accepted:
20
10
2022
entrez:
11
11
2022
pubmed:
12
11
2022
medline:
12
11
2022
Statut:
epublish
Résumé
Force mapping of biological tissues via atomic force microscopy (AFM) probes the mechanical properties of samples within a given topography, revealing the interplay between tissue organization and nanometer-level composition. Despite considerable attention to soft biological samples, constructing elasticity maps on hard tissues is not routine for standard AFM equipment due to the difficulty of interpreting nanoindentation data in light of the available models of surface deformation. To tackle this issue, we proposed a protocol to construct elasticity maps of surfaces up to several GPa in moduli by AFM nanoindentation using standard experimental conditions (air operation, nanometrically sharp spherical tips, and cantilever stiffness below 30 N/m). We showed how to process both elastic and inelastic sample deformations simultaneously and independently and quantify the degree of elasticity of the sample to decide which regime is more suitable for moduli calculation. Afterwards, we used the frequency distributions of Young's moduli to quantitatively assess differences between sample regions different for structure and composition, and to evaluate the presence of mechanical inhomogeneities. We tested our method on histological sections of sheep cortical bone, measuring the mechanical response of different osseous districts, and mapped the surface down to the single collagen fibril level.
Identifiants
pubmed: 36363104
pii: ma15217512
doi: 10.3390/ma15217512
pmc: PMC9659036
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Ministero della Salute
ID : N/A
Organisme : Istituto Ortopedico Rizzoli
ID : N/A
Références
Biophys J. 2020 Aug 4;119(3):502-513
pubmed: 32668233
Nat Mater. 2013 Mar;12(3):253-61
pubmed: 23291707
Plast Reconstr Surg. 2012 Apr;129(4):625e-635e
pubmed: 22183498
Biophys J. 2010 Jun 16;98(12):2848-56
pubmed: 20550897
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Nov-Dec;1(6):624-49
pubmed: 20049821
Front Bioeng Biotechnol. 2021 Sep 27;9:734486
pubmed: 34646817
Nat Mater. 2007 Jun;6(6):454-62
pubmed: 17515917
Bone. 2012 Jan;50(1):420-7
pubmed: 22142635
J Biomater Sci Polym Ed. 2008;19(9):1125-42
pubmed: 18727856
Int J Mol Sci. 2013 Aug 05;14(8):16124-40
pubmed: 23921683
Biomed Res Int. 2020 Jan 17;2020:1804630
pubmed: 32420323
J Biomater Appl. 2014 Nov;29(5):715-27
pubmed: 24951457
J Orthop Res. 2001 Nov;19(6):1027-34
pubmed: 11781001
Eur Cell Mater. 2001 Jan 10;1:12-7
pubmed: 14562266
J Microsc. 2010 Apr 1;238(1):27-35
pubmed: 20384835
Biomaterials. 1995 Sep;16(14):1043-55
pubmed: 8519925
Sci Rep. 2020 Sep 24;10(1):15664
pubmed: 32973235
ACS Biomater Sci Eng. 2019 Feb 11;5(2):478-486
pubmed: 33405813
ACS Nano. 2013 Feb 26;7(2):1054-63
pubmed: 23347043
Interface Focus. 2014 Apr 6;4(2):20130055
pubmed: 24748952
Nat Commun. 2013;4:2926
pubmed: 24336094
J Mech Behav Biomed Mater. 2019 May;93:81-92
pubmed: 30776678
Nanotechnology. 2007 Apr 4;18(13):135102
pubmed: 21730373
J Orthop Res. 2013 Aug;31(8):1218-25
pubmed: 23568545
Comput Methods Biomech Biomed Engin. 2013;16 Suppl 1:337-9
pubmed: 23923965
J Bacteriol. 2005 Jun;187(11):3864-8
pubmed: 15901713
ACS Omega. 2021 Sep 13;6(40):25860-25875
pubmed: 34660949
Int Orthop. 2021 Feb;45(2):427-435
pubmed: 32661637