Brain recognition of previously learned versus novel temporal sequences: a differential simultaneous processing.
brain dynamics
magnetoencephalography
memory recognition
source reconstruction
temporal sequences
Journal
Cerebral cortex (New York, N.Y. : 1991)
ISSN: 1460-2199
Titre abrégé: Cereb Cortex
Pays: United States
ID NLM: 9110718
Informations de publication
Date de publication:
25 04 2023
25 04 2023
Historique:
received:
29
07
2022
revised:
12
10
2022
accepted:
13
12
2022
medline:
3
5
2023
pubmed:
9
11
2022
entrez:
8
11
2022
Statut:
ppublish
Résumé
Memory for sequences is a central topic in neuroscience, and decades of studies have investigated the neural mechanisms underlying the coding of a wide array of sequences extended over time. Yet, little is known on the brain mechanisms underlying the recognition of previously memorized versus novel temporal sequences. Moreover, the differential brain processing of single items in an auditory temporal sequence compared to the whole superordinate sequence is not fully understood. In this magnetoencephalography (MEG) study, the items of the temporal sequence were independently linked to local and rapid (2-8 Hz) brain processing, while the whole sequence was associated with concurrent global and slower (0.1-1 Hz) processing involving a widespread network of sequentially active brain regions. Notably, the recognition of previously memorized temporal sequences was associated to stronger activity in the slow brain processing, while the novel sequences required a greater involvement of the faster brain processing. Overall, the results expand on well-known information flow from lower- to higher order brain regions. In fact, they reveal the differential involvement of slow and faster whole brain processing to recognize previously learned versus novel temporal information.
Identifiants
pubmed: 36346308
pii: 6809237
doi: 10.1093/cercor/bhac439
pmc: PMC10152090
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5524-5537Informations de copyright
© The Author(s) 2022. Published by Oxford University Press.
Références
Neuroimage. 2014 Jul 1;94:96-106
pubmed: 24642285
Psychol Med. 2006 Apr;36(4):441-54
pubmed: 16207391
Brain. 2011 Feb;134(Pt 2):415-31
pubmed: 21278407
J Neurophysiol. 2010 Jul;104(1):141-59
pubmed: 20445037
Brain. 2013 May;136(Pt 5):1639-61
pubmed: 23616587
Neuron. 2015 Oct 7;88(1):2-19
pubmed: 26447569
Commun Biol. 2022 Nov 19;5(1):1272
pubmed: 36402843
Neuroimage. 2015 Apr 1;109:418-28
pubmed: 25623499
Nat Neurosci. 2012 Jan 08;15(3):470-6, S1-3
pubmed: 22231429
Nat Rev Neurosci. 2015 Jan;16(1):55-61
pubmed: 25406711
Ann N Y Acad Sci. 2018 May 11;:
pubmed: 29749625
J Neurosci. 2007 Aug 29;27(35):9252-61
pubmed: 17728439
Brain Connect. 2011;1(1):49-59
pubmed: 22432954
Phys Med Biol. 1999 Feb;44(2):423-40
pubmed: 10070792
Phys Med Biol. 2006 Apr 7;51(7):1759-68
pubmed: 16552102
Neuron. 2013 Jul 24;79(2):361-74
pubmed: 23810540
J Neurosci. 2014 Sep 3;34(36):11972-83
pubmed: 25186744
Trends Cogn Sci. 2019 Jan;23(1):63-77
pubmed: 30471869
PNAS Nexus. 2022 Sep 28;1(4):pgac216
pubmed: 36714830
PLoS Biol. 2017 Nov 2;15(11):e2000812
pubmed: 29095816
Neuroimage. 2021 Jun;233:117954
pubmed: 33716157
Nat Neurosci. 2012 Mar 18;15(4):511-7
pubmed: 22426255
Science. 2003 Aug 29;301(5637):1246-9
pubmed: 12947203
Neuropsychologia. 2012 Jun;50(7):1432-43
pubmed: 22414595
Front Psychol. 2019 Jul 30;10:1704
pubmed: 31417454
J Neurosci. 2004 Feb 4;24(5):1159-72
pubmed: 14762134
Neuroimage. 2011 Aug 15;57(4):1466-79
pubmed: 21620977
J Neurosci. 2016 Apr 20;36(16):4492-505
pubmed: 27098693
Front Neurosci. 2015 Oct 06;9:356
pubmed: 26500480
J Neurosci. 2011 Nov 23;31(47):16949-57
pubmed: 22114265
Sci Rep. 2021 Oct 21;11(1):20813
pubmed: 34675231
Comput Intell Neurosci. 2011;2011:156869
pubmed: 21253357
Clin Neurophysiol. 2009 Mar;120(3):453-63
pubmed: 19181570
Curr Biol. 2015 Dec 7;25(23):R1116-21
pubmed: 26654366
J Neurosci. 2018 Jan 31;38(5):1178-1188
pubmed: 29255005
Sci Rep. 2022 Jul 11;12(1):11726
pubmed: 35821035
Neuroimage. 2021 Jul 1;234:117977
pubmed: 33757905
Proc Natl Acad Sci U S A. 2001 May 8;98(10):5933-6
pubmed: 11331773
Neuroimage. 2021 Dec 15;245:118735
pubmed: 34813972
Cogn Neurosci. 2012;3(3-4):238-9
pubmed: 24171746
Brain Res. 2018 Dec 1;1700:86-98
pubmed: 29981723
Brain Res Cogn Brain Res. 2003 Mar;16(1):11-25
pubmed: 12589884
Neuron. 2005 Jul 7;47(1):155-66
pubmed: 15996555
Trends Neurosci. 1992 Jan;15(1):20-5
pubmed: 1374953
Neuroimage. 2010 Feb 15;49(4):3187-97
pubmed: 19913624
Brain Struct Funct. 2019 Dec;224(9):3001-3018
pubmed: 31451898
Neuroimage. 2003 Aug;19(4):1417-26
pubmed: 12948699
Neuroimage. 2013 Jan 15;65:349-63
pubmed: 23046981
Clin Neurophysiol. 2017 Oct;128(10):1923-1936
pubmed: 28826023
Brain Topogr. 2004 Spring;16(3):139-58
pubmed: 15162912
Neuron. 2020 Jan 22;105(2):385-393.e9
pubmed: 31806493
Int Rev Neurobiol. 2005;68:149-71
pubmed: 16443013
Psychol Sci. 2003 Jan;14(1):66-73
pubmed: 12564756
Psychophysiology. 2009 Sep;46(5):1059-68
pubmed: 19515106
Nat Neurosci. 2014 Mar;17(3):423-30
pubmed: 24464039
Curr Biol. 2015 Aug 3;25(15):1966-74
pubmed: 26212883
Neuron. 2006 Jun 15;50(6):963-74
pubmed: 16772176
Phys Med Biol. 2003 Nov 21;48(22):3637-52
pubmed: 14680264
Physiol Rev. 2011 Oct;91(4):1357-92
pubmed: 22013214
Trends Cogn Sci. 2009 Aug;13(8):348-53
pubmed: 19647474
Neuroimage. 2007 Feb 15;34(4):1454-65
pubmed: 17196835
Hum Brain Mapp. 2012 Jul;33(7):1634-47
pubmed: 21739525
Front Neurol. 2014 Dec 08;5:255
pubmed: 25538675
Annu Rev Vis Sci. 2018 Sep 15;4:381-402
pubmed: 30059648
Neuron. 2017 Apr 5;94(1):193-206.e5
pubmed: 28343866
Neuroimage. 2009 Mar;45(1 Suppl):S173-86
pubmed: 19059349
J Cogn Neurosci. 1993 Fall;5(4):467-79
pubmed: 23964919
Electroencephalogr Clin Neurophysiol. 1978 Aug;45(2):186-97
pubmed: 78829