Clinical and genetic analysis of patients with segmental overgrowth features and somatic mammalian target of rapamycin (mTOR) pathway disruption: Possible novel clinical issues.
MTOR
PIK3CA
genetic mosaicism
genotype-phenotype correlations
segmental overgrowth
somatic mutations
Journal
Birth defects research
ISSN: 2472-1727
Titre abrégé: Birth Defects Res
Pays: United States
ID NLM: 101701004
Informations de publication
Date de publication:
01 12 2022
01 12 2022
Historique:
revised:
17
10
2022
received:
29
09
2022
accepted:
20
10
2022
pubmed:
9
11
2022
medline:
3
12
2022
entrez:
8
11
2022
Statut:
ppublish
Résumé
Segmental overgrowth syndromes include a group of clinical entities, all characterized by the abundant proliferation of tissues or organs in association with vascular abnormalities. These syndromes show a wide spectrum of severity ranging from limited involvement of only small areas of the body to complex cases with impressive distortions of multiple tissues and organs. It is now clear that somatic mutations in genes of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway (in brief "mTOR pathway") are responsible for such entities. Not all the cells of the body carry the same causative mutation, which is mosaic, appearing from two (or more) distinct cell lineages after fertilization. In this article, we reconsider the clinical spectrum and surveillance programs of patients with segmental overgrowth syndromes, based on the features of six patients with diverse clinical forms of overgrowth and pathogenic variants in genes of the mTOR pathway.
Substances chimiques
Phosphatidylinositol 3-Kinases
EC 2.7.1.-
Class I Phosphatidylinositol 3-Kinases
EC 2.7.1.137
TOR Serine-Threonine Kinases
EC 2.7.11.1
MTOR protein, human
EC 2.7.1.1
Types de publication
Case Reports
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1440-1448Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
Conway, R. L., Pressman, B. D., Dobyns, W. B., Danielpour, M., Lee, J., Sanchez-Lara, P. A., … Graham, J. M., Jr. (2007). Neuroimaging findings in macrocephaly-capillary malformation: A longitudinal study of 17 patients. American Journal of Medical Genetics. Part A, 143A(24), 2981-3008. https://doi.org/10.1002/ajmg.a.32040
Dazert, E., & Hall, M. N. (2011). mTOR signaling in disease. Current Opinion in Cell Biology, 23(6), 744-755. https://doi.org/10.1016/j.ceb.2011.09.003
Dobyns, W. B., & Mirzaa, G. M. (2019). Megalencephaly syndromes associated with mutations of core components of the PI3K-AKT-MTOR pathway: PIK3CA, PIK3R2, AKT3, and MTOR. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 181(4), 582-590. https://doi.org/10.1002/ajmg.c.31736
Douzgou, S., Rawson, M., Baselga, E., Danielpour, M., Faivre, L., Kashanian, A., … Biesecker, L. G. (2022). A standard of care for individuals with PIK3CA-related disorders: An international expert consensus statement. Clinical Genetics, 101(1), 32-47. https://doi.org/10.1111/cge.14027
Eng, W., Hammill, A. M., & Adams, D. M. (2020). Overgrowth syndromes and new therapies. Seminars in Pediatric Surgery, 29(5), 150974. https://doi.org/10.1016/j.sempedsurg.2020.150974
Keppler-Noreuil, K. M., Parker, V. E., Darling, T. N., & Martinez-Agosto, J. A. (2016). Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. American Journal of Medical Genetics Part C of the Seminars in Medical Genetics, 172(4), 402-421. https://doi.org/10.1002/ajmg.c.31531
Kurek, K. C., Luks, V. L., & Ayturk, U. M. (2012). Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. American Journal of Human Genetics, 90(6), 1108-1115.
Laplante, M., & Sabatini, D. M. (2012 Apr 13). mTOR signaling in growth control and disease. Cell, 149(2), 274-293. https://doi.org/10.1016/j.cell.2012.03.017
Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., … Gleeson, J. G. (2012). De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nature Genetics, 44, 941-945.
Lindhurst, M. J., Sapp, J. C., Teer, J. K., Johnston, J. J., Finn, E. M., … Biesecker, L. G. (2011). A mosaic activating mutation in AKT1 associated with the Proteus syndrome. The New England Journal of Medicine, 365(7), 611-619. https://doi.org/10.1056/NEJMoa1104017
Mirzaa, G., Graham, J. M., Jr., & Keppler-Noreuil, K. (2013). PIK3CA-related overgrowth Spectrum. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. H. Bean, K. Stephens, & A. Amemiya (Eds.), GeneReviews®. Seattle (WA): University of Washington, Seattle Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK153722
Mirzaa, G., Parry, D. A., Fry, A. E., Giamanco, K. A., Schwartzentruber, J., Vanstone, M., … Sheridan, E. G. (2014). De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nature Genetics, 46(5), 510-515. https://doi.org/10.1038/ng.2948
Mirzaa, G., Timms, A. E., Conti, V., Boyle, E. A., Girisha, K. M., Martin, B., … Dobyns, W. B. (2016). PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight, 1(9), e87623. https://doi.org/10.1172/jci.insight.87623
Peyre, M., Miyagishima, D., Bielle, F., Chapon, F., Sierant, M., Venot, Q., … Kalamarides, M. (2021). Somatic PIK3CA mutations in sporadic cerebral cavernous malformations. The New England Journal of Medicine, 385(11), 996-1004. https://doi.org/10.1056/NEJMoa2100440
Rivière, J. B., Mirzaa, G. M., O'Roak, B. J., Beddaoui, M., Alcantara, D., Conway, R. L., … Dobyns, W. B. (2012). De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nature Genetics, 44(8), 934-940. https://doi.org/10.1038/ng.2331
Zenner, K., Cheng, C. V., Jensen, D. M., Timms, A. E., Shivaram, G., Bly, R., … Bennett, J. T. (2019). Genotype correlates with clinical severity in PIK3CA-associated lymphatic malformations. JCI Insight, 4(21), e129884. https://doi.org/10.1172/jci.insight.129884