Atmospheric temperature and humidity demonstrated strong correlation with productivity in tropical moist deciduous forests.
Carbon sequestration
Generalized linear model
Microclimate
Net primary productivity
Principal component analysis
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
04 Nov 2022
04 Nov 2022
Historique:
received:
28
06
2022
accepted:
19
10
2022
entrez:
4
11
2022
pubmed:
5
11
2022
medline:
9
11
2022
Statut:
epublish
Résumé
Tropical forests sequester six times higher carbon than that released by humans annually into the atmosphere. These biodiversity-rich tropical forests have high net primary productivity (NPP), which differs among constituent plant communities. Tropical moist deciduous forests occupy 179,335 km
Identifiants
pubmed: 36331671
doi: 10.1007/s10661-022-10668-7
pii: 10.1007/s10661-022-10668-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
69Subventions
Organisme : CSIR-NBRI
ID : NWP-020
Organisme : CSIR-NBRI
ID : BSC-0109
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Asner, G. P., Scurlock, J. M. O., & Hicke, J. A. (2003). Global synthesis of leaf area index observation: Implication for ecological and remote sensing studies. Global Ecology and Biogeography, 12, 191–205.
Barik, S. K., Pandey, H. N., Tripathi, R. S., & Rao, P. (1992). Microenvironmental variability and species diversity in tree fall gaps in a sub-tropical broadleaved forest. Vegetatio, 103(1), 31–40.
Behera, S. K., Behera, M. D., & Tuli, R. (2015). An indirect method of estimating leaf area index in a tropical deciduous forest of India. Ecological Indicators, 58, 356–364.
Behera, S. K., Mishra, A. K., Sahu, N., Kumar, A., Singh, N., et al. (2012). The study of microclimate in response to different plant community association in tropical moist deciduous forest from northern India. Biodiversity and Conservation, 21, 1159–1176.
Behera, S. K., Sahu, N., Mishra, A. K., Bargali, S. S., Behera, M. D., & Tuli, R. (2017). Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship with stand structural attributes. Ecological Engineering, 99, 513–524.
Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449.
Bonan, G. B., & Shugart, H. H. (1989). Environmental factors and ecological processes in boreal forests. The Annual Review of Ecology, Evolution, and Systematics, 20, 1–28.
Bondeau, A., Kicklighter, D.W., Kaduk, J., and the Participants of the Potsdam NPP Model Intercomparison. (1999). Comparing global models of terrestrial net primary productivity (NPP): Importance of vegetation structure on seasonal NPP estimates. Global Change Biology, 5, 35–45.
Cardinale, B. J., Wright, J. P., Cadotte, M. W., Caroll, I. T., Hector, A., et al. (2007). Impact of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 104, 18123–18128.
Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. Manager of publications.
Chapin, F. S., & Eviner, V. T., III. (2003). Biogeochemistry of terrestrial net primary production. In W. Schlesinger (Ed.), Biogeochemistry: Treatise on geochemistry (pp. 215–247). Elsevier.
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., et al. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99.
Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., & Plummer, S. (1997). Leaf area index of boreal forests: Theory, techniques, and measurements. Journal of Geophysical Research, 102, 29429–29443.
Chen, S., Wang, W., Xu, W., Wang, Y., Wan, H., Chen, D., & Bai, Y. (2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences, 115(16), 4027–4032.
Chitale, V. S., & Behera, M. D. (2014). Analysing land and vegetation cover dynamics during last three decades in Katerniaghat Wildlife Sanctuary India. Journal of Earth System Science, 123(7), 1467–1479.
Churkina, G., Running, S. W., Schloss, A. L., and the Participants of the Potsdam NPP Model Intercomparison. (1999). Comparing global models of terrestrial net primary productivity (NPP): The importance of water availability. Global Change Biology, 5, 46–55.
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., et al. (2001a). Measuring net primary production in forests: Concepts and field methods. Ecological Applications, 11, 356–370.
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., et al. (2001b). Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications, 11, 371–384.
Das, A. K., & Ramakrishnan, P. S. (1985). Litter dynamics in Khasi pine (Pinus kesiya Royle ex Gordon) of North-eastern India. Forest Ecology and Management, 10, 135–153.
Devi, L. S., & Yadava, P. S. (2009). Aboveground biomass and net primary productivity of semi-evergreen tropical forest of Manipur, north-eastern India. Journal of Forestry Research, 20, 151–155.
David, H. C., de Araújo, E. J. G., Morais, V. A., Scolforo, J. R. S., Marques, J. M., Netto, S. P., & MacFarlane, D. W. (2017). Carbon stock classification for tropical forests in Brazil: Understanding the effect of stand and climate variables. Forest Ecology and Management, 404, 241–250.
Ducey, M. J., Zarin, D. J., Vasconcelos, S. S., & Araújo, M. M. (2009). Biomass equations for forest regrowth in the eastern Amazon using randomized branch sampling. Acta Amazonica, 39, 349–360.
George, M., Varghees, G., & Manivachakam, P. (1990). Nutrient cycling in Indian tropical dry deciduous forest ecosystem. Proceeding of the Seminar on Forest Productivity held at F.R.I. Dehradun, India, 23–24 April 1990, pp. 289–297.
Gherardi, L. A., & Sala, O. E. (2020). Global patterns and climatic controls of belowground net carbon fixation. Proceedings of the National Academy of Sciences, 117(33), 20038–20043.
Girardin, C. A. J., Mahli, Y., Aragao, L. E. O. C., Mamani, M., Huaraca Huasco, W., et al. (2010). Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16, 3176–3192.
Gower, S. T., McMurtrie, R. E., & Murty, D. (1996). Aboveground net primary production decline with stand age: Potential causes. Trends in Ecology and Evolution, 11, 378–382.
Huang, J. G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., & Ziaco, E. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences, 117(34), 20645–20652.
IGBP, Terrestrial Carbon Working Group. (1998). The terrestrial carbon cycle: Implications for the Kyoto protocol. Science, 280, 1393–1394.
Kooijmans, L. M., Sun, W., Aalto, J., Erkkilä, K. M., Maseyk, K., Seibt, U., & Chen, H. (2019). Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis. Proceedings of the National Academy of Sciences, 116(7), 2470–2475.
Laurance, W. F., Fearnside, P. M., Laurance, S. G., Delamonica, P., Lovejoy, T. E., et al. (1999). Relationship between soils and Amazon forest biomass: A landscape-scale study. Forest Ecology and Management, 118, 127–138.
Leuschner, C., Moser, G., Bertsch, C., Röderstein, M., & Hertel, D. (2007). Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology, 8, 219–230.
Liang, J., Zhou, M., Tobin, P. C., McGuire, A. D., & Reich, P. B. (2015). Biodiversity influences plant productivity through niche–efficiency. Proceedings of the National Academy of Sciences, 112(18), 5738–5743.
Linger, E., Hogan, J. A., Cao, M., Zhang, W. F., Yang, X. F., & Hu, Y. H. (2020). Precipitation influences on the net primary productivity of a tropical seasonal rainforest in Southwest China: A 9-year case study. Forest Ecology and Management, 467, 118153.
Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72–76.
Lu, X., Vitousek, P. M., Mao, Q., Gilliam, F. S., Luo, Y., Turner, B. L., & Mo, J. (2021). Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences, 118(16), e2020790118.
Malhi, Y., Doughty, C., & Galbraith, D. (2011). The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society Biological Sciences, 366, 3225–3245.
Malhi, Y., Eduardo, L., Aragao, C., Metcalfe, D. B., Paiva, R., et al. (2005). Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, 15, 1255–1274.
Malhi, Y., & Grace, J. (2000). Tropical forests and atmospheric carbon dioxide. Trends in Ecology and Evolution, 15, 332–337.
Martinez-Yrizar, A., Sarukhan, J., Perez-Jimenez, A., Rincon, E., Maass, J. M., et al. (1992). Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, Mexico. Journal of Tropical Ecology, 8, 87–96.
McCarthy, H. R., Oren, R., Finzi, A. C., & Johnsen, K. H. (2006). Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences, 103(51), 19356–19361.
Medvigy, D., Wofsy, S. C., Munger, J. W., & Moorcroft, P. R. (2010). Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proceedings of the National Academy of Sciences of the United States of America, 107, 8275–8280.
Misra, R., Singh, J. S., & Singh, K. P. (1967). Preliminary observations on the production of dry matter by sal (Shorea robusta Gaertn. f.). Tropical Ecology, 8, 94–104.
Montagnini, F., & Jordan, C. F. (2005). Tropical forest ecology: The basis for conservation and management. Springer Science & Business Media.
Mooney, H., & Bullock, S. (Eds.). (1994). Tropical deciduous forest ecosystems. Cambridge University Press.
Nogués-Bravo, D. (2009). Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, 18(5), 521–531.
Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., & Oren, R. (2005). Forest response to elevated CO
Paquette, A., & Messier, C. (2011). The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology and Biogeography, 20, 170–180.
Poorter, L., Sande, M. T., Thompson, J., Arets, E. J. M. M., Alarcón, A., et al. (2015). Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24, 1–15.
Raman, S. S. (1976). Biological productivity of Shorea plantations. Indian Forester, 102, 174–184.
Rana, B. S., Singh, S. P., & Singh, R. P. (1988). Biomass and productivity of central Himalayan Sal (Shorea robusta) forest. Tropical Ecology, 29, 1–5.
Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S., Kushwaha, S. P. S., & Ramachandran, R. M. (2015). New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39, 142–159.
Saldarriaga, J. G., West, D. C., Tharp, M. L., & Uhl, C. (1988). Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology, 76, 938–958.
Shirima, D. D., Pfeifer, M., Platts, P. J., Totland, Ø., & Moe, S. R. (2015). Interactions between canopy structure and herbaceous biomass along environmental gradients in moist forest and dry Miombo woodland of Tanzania. PLoS ONE, 10, 1–15.
Singh, J. S., Singh, S. P., Saxena, A. K., & Rawat, Y. S. (1984a). The forest vegetation of Silent Valley, India. Tropical Rain Forest. The Leeds symposium. pp. 25–52.
Singh, J. S., Rawat, Y. S., & Chaturvedi, O. P. (1984b). Replacement of oak forest with pine in the Himalaya affects the nitrogen cycle. Nature, 311, 54–56.
Singh, L., & Singh, J. S. (1991). Storage and flux of nutrient in a dry tropical forest in India. Annals of Botany, 68, 275–284.
Slik, J. W. F., Aiba, S., Brearley, F. Q., Cannon, C. H., Forshed, O., et al. (2010). Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Global Ecology and Biogeography, 19, 50–60.
Swamy, S. L., Dutt, C. B. S., Murthy, M. S. R., Mishra, A., & Bargali, S. S. (2010). Floristics and dry matter dynamics of tropical wet evergreen forests of Western Ghats, India. Current Science, 99, 353–364.
Taylor, P. G., Cleveland, C. C., Wieder, W. R., Sullivan, B. W., Doughty, C. E., Dobrowski, S. Z., & Townsend, A. R. (2017). Temperature and rainfall interact to control carbon cycling in tropical forests. Ecology Letters, 20(6), 779–788.
Tian, H., Mellilo, J. M., Kicklighter, D. W., McGuire, A. D., Helfrich III, J. V. K., et al. (1998). Effect of inter annual climate variability on carbon storage in Amazonian ecosystems. Nature, 396, 664–667.
Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., et al. (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300–1302.
Toky, O. P., & Ramakrishnan, P. S. (1983). Secondary succession following slash-and-burn agriculture in north-eastern India. I. Biomass, litterfall and productivity. Journal of Ecology, 71, 735–745.
Tripathi, P., Behera, M. D., Behera, S. K., & Sahu, N. (2019). Investigating the contribution of climate variables to estimates of net primary productivity in a tropical deciduous forest in India. Environmental Monitoring and Assessment, 191(3), 1–15.
Vilà, M., Vayreda, J., Comas, L., Ibáñez, J., Mata, T., et al. (2007). Species richness and wood production: A positive association in Mediterranean forests. Ecology Letters, 10, 241–250.
Wang, W., Ichii, K., Hashimoto, H., Michaelis, A. R., Thornton, P. E., et al. (2009). A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration. Ecological Modelling, 220, 2009–2023.
Whittaker, A. H., & Woodwell, G. M. (1968). Dimension and production relations of trees and shrubs in the Brookhaven forest. New York. Journal of Ecology, 56, 1–25.