Collagen cross-link profiles and mineral are different between the mandible and femur with site specific response to perturbed collagen.

AGE, advanced glycation end product Advanced glycation end products BAPN, beta-aminoproprionitrile Biomechanical properties Bone quality CML, carboxymethyl-lysine Collagen cross-link DHLNL, dihydroxylysinonorleucine DPD, lysylpyridinoline Femur HLKNL, hydroxylysinoketonorleucine HLNL, hydroxylysinonorleucine HPLC-FLD, high-performance liquid chromatography with fluorescence detection LC-MS, liquid chromatography/mass spectrometry LH, lysyl hydroxylase LKNL, lysinoketonorleucine LOX, lysyl oxidase Mandible Mineralization PEN, pentosidine PMMA, poly-methyl-methacrylate PYD, hydroxylysylpyridinoline Pyr, pyrroles

Journal

Bone reports
ISSN: 2352-1872
Titre abrégé: Bone Rep
Pays: United States
ID NLM: 101646176

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 12 08 2022
revised: 15 10 2022
accepted: 18 10 2022
entrez: 3 11 2022
pubmed: 4 11 2022
medline: 4 11 2022
Statut: epublish

Résumé

Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.

Identifiants

pubmed: 36325166
doi: 10.1016/j.bonr.2022.101629
pii: S2352-1872(22)00463-6
pmc: PMC9618783
doi:

Types de publication

Journal Article

Langues

eng

Pagination

101629

Subventions

Organisme : NIDCR NIH HHS
ID : T32 DE007057
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM145304
Pays : United States

Informations de copyright

© 2022 The Authors.

Déclaration de conflit d'intérêts

All authors state that they have no conflicts of interest.

Références

Bonekey Rep. 2015 Mar 11;4:645
pubmed: 25798234
Bone. 2006 Dec;39(6):1190-5
pubmed: 16901772
J Bone Miner Res. 2009 Sep;24(9):1565-71
pubmed: 19419303
Appl Spectrosc. 2006 Apr;60(4):366-72
pubmed: 16613631
Vascular. 2013 Oct;21(5):287-92
pubmed: 23518849
Calcif Tissue Int. 2007 Jul;81(1):46-52
pubmed: 17551767
Ann Surg. 2015 Feb;261(2):395-404
pubmed: 24651130
Food Funct. 2016 Jun 15;7(6):2508-15
pubmed: 27121272
Sci Rep. 2019 Oct 2;9(1):14155
pubmed: 31578360
Bone. 2022 Mar;156:116302
pubmed: 34952229
Bone. 2019 Mar;120:9-19
pubmed: 30282057
J Orthop Res. 2016 Dec;34(12):2126-2136
pubmed: 27027407
J Bone Miner Res. 1996 Jul;11(7):931-7
pubmed: 8797113
Bone. 2005 May;36(5):893-901
pubmed: 15814305
Bone. 2004 Mar;34(3):443-53
pubmed: 15003792
J Appl Lab Med. 2020 May 1;5(3):558-568
pubmed: 32445362
J Biomed Mater Res A. 2010 Mar 1;92(3):1048-56
pubmed: 19301272
J Bone Miner Res. 2015 Mar;30(3):455-64
pubmed: 25213475
BMC Musculoskelet Disord. 2016 Jul 22;17:308
pubmed: 27448601
JBMR Plus. 2021 Oct 19;5(11):e10548
pubmed: 34761150
Matrix Biol. 1998 Feb;16(7):387-98
pubmed: 9524359
J Bone Miner Res. 2013 Jan;28(1):73-80
pubmed: 22836659
Bone. 2016 May;86:91-97
pubmed: 26960578
J Phys Chem C Nanomater Interfaces. 2012 Mar 15;116(10):6320-6331
pubmed: 22822414
J Bone Miner Res. 2013 Jan;28(1):2-17
pubmed: 23197339
J Struct Biol. 2020 Dec 1;212(3):107650
pubmed: 33096230
Dis Model Mech. 2015 Jun;8(6):543-51
pubmed: 26035864
Bone. 2008 Sep;43(3):459-68
pubmed: 18583211
Bone. 2011 Dec;49(6):1232-41
pubmed: 21920485
Physiol Res. 2017 Jul 18;66(3):391-402
pubmed: 28248532
Bone. 2006 Sep;39(3):434-42
pubmed: 16627026
Bone. 2021 Feb;143:115763
pubmed: 33220504
BMC Musculoskelet Disord. 2019 Dec 27;20(1):627
pubmed: 31881872
Sci Rep. 2020 Nov 2;10(1):18774
pubmed: 33139851
Calcif Tissue Int. 2018 Aug;103(2):175-188
pubmed: 29500623
PLoS One. 2016 Sep 21;11(9):e0163273
pubmed: 27655444
Osteoporos Int. 2010 Apr;21(4):655-66
pubmed: 19484165
Analyst. 2021 Dec 6;146(24):7464-7490
pubmed: 34786574
J Biomech. 2013 Feb 22;46(4):723-30
pubmed: 23261243
J Struct Biol. 2006 Dec;156(3):489-96
pubmed: 16931054
J Am Chem Soc. 2009 Dec 2;131(47):17064-5
pubmed: 19894735
Sci Rep. 2018 Apr 12;8(1):5881
pubmed: 29651097
Anat Rec A Discov Mol Cell Evol Biol. 2006 Dec;288(12):1243-9
pubmed: 17075846
Bone. 2002 Jul;31(1):1-7
pubmed: 12110404
Bone. 2008 Mar;42(3):476-82
pubmed: 18187375
Osteoporos Int. 2006;17(7):986-95
pubmed: 16552468
Matrix Biol. 2016 May-Jul;52-54:162-175
pubmed: 26924474
J Biol Chem. 1996 Oct 25;271(43):26508-16
pubmed: 8900119
Bone. 2018 May;110:128-133
pubmed: 29408699
Bone. 1996 Nov;19(5):479-84
pubmed: 8922646
Front Physiol. 2017 May 09;8:273
pubmed: 28536534
Ann N Y Acad Sci. 2005 Jun;1043:710-7
pubmed: 16037297
Osteoporos Int. 2006 Oct;17(10):1514-23
pubmed: 16770520
Nanomedicine. 2013 Oct;9(7):1036-47
pubmed: 23639677
J Biomech. 2021 Apr 15;119:110342
pubmed: 33706105
J Chromatogr A. 2016 Dec 23;1478:60-67
pubmed: 27916391
Calcif Tissue Int. 2001 Mar;68(3):156-62
pubmed: 11351499
Bone. 2006 Nov;39(5):1073-1079
pubmed: 16829221
Matrix Biol. 2016 May-Jul;52-54:7-18
pubmed: 26772152
Bone. 2007 Sep;41(3):456-61
pubmed: 17602910
Calcif Tissue Int. 2017 Jun;100(6):565-574
pubmed: 28246932
Bone. 1998 Mar;22(3):181-7
pubmed: 9514209
Bone. 2019 Oct;127:91-103
pubmed: 31055118
Calcif Tissue Int. 2018 Oct;103(4):411-421
pubmed: 29916126
JBMR Plus. 2021 Jan 03;5(3):e10454
pubmed: 33778323
J Bone Joint Surg Am. 1977 Jul;59(5):670-2
pubmed: 873962
J Mech Behav Biomed Mater. 2019 Oct;98:20-25
pubmed: 31176091
Bone Rep. 2020 Mar 28;12:100262
pubmed: 32258252
Appl Spectrosc. 2008 Dec;62(12):1285-94
pubmed: 19094386
J Bone Miner Res. 2019 Jul;34(7):1191-1206
pubmed: 30866111
J Biol Chem. 2018 Oct 5;293(40):15620-15627
pubmed: 30143533
J Bone Miner Res. 2018 May;33(5):921-929
pubmed: 29281127
Biomed Res Int. 2014;2014:769414
pubmed: 24818151
J Bone Joint Surg Am. 1966 Jan;48(1):140-8
pubmed: 5902798
Appl Spectrosc. 2017 Oct;71(10):2404-2410
pubmed: 28485618
Matrix Biol. 2008 Jan;27(1):34-41
pubmed: 17884405
Calcif Tissue Int. 2021 Jul;109(1):77-91
pubmed: 33710382
Osteoporos Int. 2014 Mar;25(3):1005-15
pubmed: 24190426
J Orthop Sci. 2004;9(4):410-4
pubmed: 15278782
J Bone Miner Res. 2010 Feb;25(2):247-61
pubmed: 19594296
Lasers Med Sci. 2012 Mar;27(2):487-95
pubmed: 21837504
Bone. 2015 Dec;81:327-337
pubmed: 26211995

Auteurs

Genevieve E Romanowicz (GE)

Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.

Aidan H Terhune (AH)

Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA.

Benjamin J Bielajew (BJ)

Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA.

Benjamin Sexton (B)

Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.

Michelle Lynch (M)

Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.

Gurjit S Mandair (GS)

Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.

Erin M B McNerny (EMB)

Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA.

David H Kohn (DH)

Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA.

Classifications MeSH