In vitro effects of eslicarbazepine (S-licarbazepine) as a potential precision therapy on SCN8A variants causing neuropsychiatric disorders.

NaV1.6 S-licarbazepine SCN8A developmental and epileptic encephalopathy epilepsy eslicarbazepine precision medicine sodium channel blocker

Journal

British journal of pharmacology
ISSN: 1476-5381
Titre abrégé: Br J Pharmacol
Pays: England
ID NLM: 7502536

Informations de publication

Date de publication:
04 2023
Historique:
revised: 06 10 2022
received: 20 08 2021
accepted: 07 10 2022
pubmed: 3 11 2022
medline: 15 3 2023
entrez: 2 11 2022
Statut: ppublish

Résumé

Variants in SCN8A, the Na We investigated the therapeutic potential of eslicarbazepine (S-licarbazepine; S-lic), an enhancer of slow inactivation of voltage gated sodium channels, on two variants with biophysical and neuronal gain-of-function (G1475R and M1760I) and one variant with biophysical gain-of-function but neuronal loss-of-function (A1622D) in neuroblastoma cells and in murine primary hippocampal neuron cultures. These three variants cover the broad spectrum of Na Similar to known effects on Na S-lic has not only substance-specific effects but also variant-specific effects. Personalized treatment regimens optimized to achieve such variant-specific pharmacological modulation may help to reduce adverse side effects and improve the overall therapeutic outcome of SCN8A-related disease.

Sections du résumé

BACKGROUND AND PURPOSE
Variants in SCN8A, the Na
EXPERIMENTAL APPROACH
We investigated the therapeutic potential of eslicarbazepine (S-licarbazepine; S-lic), an enhancer of slow inactivation of voltage gated sodium channels, on two variants with biophysical and neuronal gain-of-function (G1475R and M1760I) and one variant with biophysical gain-of-function but neuronal loss-of-function (A1622D) in neuroblastoma cells and in murine primary hippocampal neuron cultures. These three variants cover the broad spectrum of Na
KEY RESULTS
Similar to known effects on Na
CONCLUSIONS AND IMPLICATIONS
S-lic has not only substance-specific effects but also variant-specific effects. Personalized treatment regimens optimized to achieve such variant-specific pharmacological modulation may help to reduce adverse side effects and improve the overall therapeutic outcome of SCN8A-related disease.

Identifiants

pubmed: 36321697
doi: 10.1111/bph.15981
doi:

Substances chimiques

eslicarbazepine S5VXA428R4
10,11-dihydro-10-hydroxy-5H-dibenz(b,f)azepine-5-carboxamide XFX1A5KJ3V
Dibenzazepines 0
NAV1.6 Voltage-Gated Sodium Channel 0
Scn8a protein, mouse 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1038-1055

Informations de copyright

© 2022 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

Références

Alexander, S. P., Mathie, A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Catterall, W. A., … Zhu, M. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 178(S1), S157-S245. https://doi.org/10.1111/bph.15539
Bialer, M., & Soares-da-Silva, P. (2012). Pharmacokinetics and drug interactions of eslicarbazepine acetate. Epilepsia, 53(6), 935-946. https://doi.org/10.1111/j.1528-1167.2012.03519.x
Boerma, R. S., Braun, K. P., van den Broek, M. P., van Berkestijn, F. M., Swinkels, M. E., Hagebeuk, E. O., Lindhout, D., van Kempen, M., Boon, M., Nicolai, J., de Kovel, C. G., Brilstra, E. H., & Koeleman, B. P. (2016). Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: A molecular neuropharmacological approach. Neurotherapeutics, 13(1), 192-197. https://doi.org/10.1007/s13311-015-0372-8
Bonifacio, M. J., Sheridan, R. D., Parada, A., Cunha, R. A., Patmore, L., & Soares-da-Silva, P. (2001). Interaction of the novel anticonvulsant, BIA 2-093, with voltage-gated sodium channels: Comparison with carbamazepine. Epilepsia, 42(5), 600-608.
Booker, S. A., Pires, N., Cobb, S., Soares-da-Silva, P., & Vida, I. (2015). Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors. Neuropharmacology, 93, 103-115. https://doi.org/10.1016/j.neuropharm.2015.01.019
Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179(15), 3907-3913. https://doi.org/10.1111/bph.15868
Dilena, R., Striano, P., Gennaro, E., Bassi, L., Olivotto, S., Tadini, L., Mosca, F., Barbieri, S., Zara, F., & Fumagalli, M. (2017). Efficacy of sodium channel blockers in SCN2A early infantile epileptic encephalopathy. Brain Dev, 39(4), 345-348. https://doi.org/10.1016/j.braindev.2016.10.015
Doeser, A., Dickhof, G., Reitze, M., Uebachs, M., Schaub, C., Pires, N. M., Bonifácio, M. J., Soares-da-Silva, P., & Beck, H. (2015). Targeting pharmacoresistant epilepsy and epileptogenesis with a dual-purpose antiepileptic drug. Brain, 138(Pt 2), 371-387. https://doi.org/10.1093/brain/awu339
Doeser, A., Soares-da-Silva, P., Beck, H., & Uebachs, M. (2014). The effects of eslicarbazepine on persistent Na(+) current and the role of the Na(+) channel beta subunits. Epilepsy Research, 108(2), 202-211. https://doi.org/10.1016/j.eplepsyres.2013.11.022
Gardella, E., Marini, C., Trivisano, M., Fitzgerald, M. P., Alber, M., Howell, K. B., Darra, F., Siliquini, S., Bölsterli, B. K., Masnada, S., Pichiecchio, A., Johannesen, K. M., Jepsen, B., Fontana, E., Anibaldi, G., Russo, S., Cogliati, F., Montomoli, M., Specchio, N., … Moller, R. S. (2018). The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology, 91(12), e1112-e1124. https://doi.org/10.1212/WNL.0000000000006199
Gardella, E., & Moller, R. S. (2019). Phenotypic and genetic spectrum of SCN8A-related disorders, treatment options, and outcomes. Epilepsia, 60(Suppl 3), S77-S85. https://doi.org/10.1111/epi.16319
Gertler, T. S., & Carvill, G. L. (2019). SCN8A: When neurons are so excited, they just can't hide it. Epilepsy Currents, 19(4), 269-271. https://doi.org/10.1177/1535759719858338
Goldberg, E. M. (2021). Rational small molecule treatment for genetic epilepsies. Neurotherapeutics, 18(3), 1490-1499. https://doi.org/10.1007/s13311-021-01110-w
Hebeisen, S., Pires, N., Loureiro, A. I., Bonifacio, M. J., Palma, N., Whyment, A., Spanswick, D., & Soares-da-Silva, P. (2015). Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: A comparison with carbamazepine, oxcarbazepine and lacosamide. Neuropharmacology, 89, 122-135. https://doi.org/10.1016/j.neuropharm.2014.09.008
Hedrich, U. B., Liautard, C., Kirschenbaum, D., Pofahl, M., Lavigne, J., Liu, Y., Theiss, S., Slotta, J., Escayg, A., Dihné, M., Beck, H., Mantegazza, M., & Lerche, H. (2014). Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation. The Journal of Neuroscience, 34(45), 14874-14889. https://doi.org/10.1523/JNEUROSCI.0721-14.2014
Holtkamp, D., Opitz, T., Hebeisen, S., Soares-da-Silva, P., & Beck, H. (2018). Effects of eslicarbazepine on slow inactivation processes of sodium channels in dentate gyrus granule cells. Epilepsia, 59(8), 1492-1506. https://doi.org/10.1111/epi.14504
Ijff, D. M., & Aldenkamp, A. P. (2013). Chapter 73 - Cognitive side-effects of antiepileptic drugs in children. In O. Dulac, M. Lassonde, & H. B. Sarnat (Eds.). Handbook of clinical neurology (Vol. 111, pp. 707-718). Elsevier.
Johannesen, K. M., Liu, Y., Gjerulfsen, C. E., Koko, M., Sonnenberg, L., Schubert, J., Fenger, C. D., Eltokhi, A., Rannap, M., Koch, N. A., Lauxmann, S., Krüger, J., Kegele, J., Canafoglia, L., Franceschetti, S., Mayer, T., Rebstock, J., Zacher, P., Ruf, S., … Møller, R. S. (2021). Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications. Brain, 145(9), 2991-3009. https://doi.org/10.1093/brain/awab321
John, V. H., Main, M. J., Powell, A. J., Gladwell, Z. M., Hick, C., Sidhu, H. S., Clare, J. J., Tate, S., & Trezise, D. J. (2004). Heterologous expression and functional analysis of rat Nav1.8 (SNS) voltage-gated sodium channels in the dorsal root ganglion neuroblastoma cell line ND7-23. Neuropharmacology, 46(3), 425-438. https://doi.org/10.1016/j.neuropharm.2003.09.018
Lauxmann, S., Sonnenberg, L., Koch, N. A., Bosselmann, C., Winter, N., Schwarz, N., Wuttke, T. V., Hedrich, U. B. S., Liu, Y., Lerche, H., Benda, J., & Kegele, J. (2021). Therapeutic potential of Sodium Channel blockers as a targeted therapy approach in KCNA1-associated episodic ataxia and a comprehensive review of the literature. Frontiers in Neurology, 12, 703970. https://doi.org/10.3389/fneur.2021.703970
Leslie, T. K., Bruckner, L., Chawla, S., & Brackenbury, W. J. (2020). Inhibitory effect of Eslicarbazepine acetate and S-licarbazepine on Nav1.5 channels. Frontiers in Pharmacology, 11, 555047. https://doi.org/10.3389/fphar.2020.555047
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://doi.org/10.1111/bph.15178
Liu, Y., Schubert, J., Sonnenberg, L., Helbig, K. L., Hoei-Hansen, C. E., Koko, M., Rannap, M., Lauxmann, S., Huq, M., Schneider, M. C., Johannesen, K. M., Kurlemann, G., Gardella, E., Becker, F., Weber, Y. G., Benda, J., Møller, R. S., & Lerche, H. (2019). Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain, 142(2), 376-390. https://doi.org/10.1093/brain/awy326
Macdonald, R. L. (1988). Anticonvulsant drug actions on neurons in cell culture. Journal of Neural Transmission, 72(3), 173-183. https://doi.org/10.1007/BF01243417
Moller, R. S., & Johannesen, K. M. (2016). Precision medicine: SCN8A encephalopathy treated with sodium channel blockers. Neurotherapeutics, 13(1), 190-191. https://doi.org/10.1007/s13311-015-0403-5
Nunes, T., Rocha, J. F., Falcao, A., Almeida, L., & Soares-da-Silva, P. (2013). Steady-state plasma and cerebrospinal fluid pharmacokinetics and tolerability of eslicarbazepine acetate and oxcarbazepine in healthy volunteers. Epilepsia, 54(1), 108-116. https://doi.org/10.1111/j.1528-1167.2012.03595.x
O'Brien, J. E., & Meisler, M. H. (2013). Sodium channel SCN8A (Nav1.6): Properties and de novo mutations in epileptic encephalopathy and intellectual disability. Frontiers in Genetics, 4, 213. https://doi.org/10.3389/fgene.2013.00213
Oyrer, J., Maljevic, S., Scheffer, I. E., Berkovic, S. F., Petrou, S., & Reid, C. A. (2018). Ion channels in genetic epilepsy: From genes and mechanisms to disease-targeted therapies. Pharmacological Reviews, 70(1), 142-173. https://doi.org/10.1124/pr.117.014456
Parrini, E., Marini, C., Mei, D., Galuppi, A., Cellini, E., Pucatti, D., Chiti, L., Rutigliano, D., Bianchini, C., Virdò, S., De Vita, D., Bigoni, S., Barba, C., Mari, F., Montomoli, M., Pisano, T., Rosati, A., Clinical Study Group, & Guerrini, R. (2017). Diagnostic targeted resequencing in 349 patients with drug-resistant pediatric epilepsies identifies causative mutations in 30 different genes. Human Mutation, 38(2), 216-225. https://doi.org/10.1002/humu.23149
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Wurbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. British Journal of Pharmacology, 177(16), 3617-3624. https://doi.org/10.1111/bph.15193
Perucca, E., Elger, C., Halasz, P., Falcao, A., Almeida, L., & Soares-da-Silva, P. (2011). Pharmacokinetics of eslicarbazepine acetate at steady-state in adults with partial-onset seizures. Epilepsy Research, 96(1-2), 132-139. https://doi.org/10.1016/j.eplepsyres.2011.05.013
Qiao, X., Sun, G., Clare, J. J., Werkman, T. R., & Wadman, W. J. (2014). Properties of human brain sodium channel alpha-subunits expressed in HEK293 cells and their modulation by carbamazepine, phenytoin and lamotrigine. British Journal of Pharmacology, 171(4), 1054-1067. https://doi.org/10.1111/bph.12534
Schmidt, S., Pothmann, L., Muller-Komorowska, D., Opitz, T., Soares da Silva, P., & Beck, H. (2021). Complex effects of eslicarbazepine on inhibitory micro networks in chronic experimental epilepsy. Epilepsia, 62(2), 542-556. https://doi.org/10.1111/epi.16808
Shorvon, S. D., Trinka, E., Steinhoff, B. J., Holtkamp, M., Villanueva, V., Peltola, J., & Ben-Menachem, E. (2017). Eslicarbazepine acetate: Its effectiveness as adjunctive therapy in clinical trials and open studies. Journal of Neurology, 264(3), 421-431. https://doi.org/10.1007/s00415-016-8338-2
Soares-da-Silva, P., Pires, N., Bonifacio, M. J., Loureiro, A. I., Palma, N., & Wright, L. C. (2015). Eslicarbazepine acetate for the treatment of focal epilepsy: An update on its proposed mechanisms of action. Pharmacology Research & Perspectives, 3(2), e00124. https://doi.org/10.1002/prp2.124
Stimberg, M., Brette, R., & Goodman, D. F. (2019). Brian 2, an intuitive and efficient neural simulator. eLife, 8, e47314. https://doi.org/10.7554/eLife.47314
Tidball, A. M., Lopez-Santiago, L. F., Yuan, Y., Glenn, T. W., Margolis, J. L., Clayton Walker, J., Kilbane, E. G., Miller, C. A., Martina Bebin, E., Scott Perry, M., Isom, L. L., & Parent, J. M. (2020). Variant-specific changes in persistent or resurgent sodium current in SCN8A-related epilepsy patient-derived neurons. Brain, 143(10), 3025-3040. https://doi.org/10.1093/brain/awaa247
Traub, R. D., & Miles, R. (1991). Multiple modes of neuronal population activity emerge after modifying specific synapses in a model of the CA3 region of the hippocampus. Annals of the new York Academy of Sciences, 627, 277-290. https://doi.org/10.1111/j.1749-6632.1991.tb25931.x
Veeramah, K. R., O'Brien, J. E., Meisler, M. H., Cheng, X., Dib-Hajj, S. D., Waxman, S. G., Talwar, D., Girirajan, S., Eichler, E. E., Restifo, L. L., Erickson, R. P., & Hammer, M. F. (2012). De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. American Journal of Human Genetics, 90(3), 502-510. https://doi.org/10.1016/j.ajhg.2012.01.006
Wang, J., Gao, H., Bao, X., Zhang, Q., Li, J., Wei, L., Wu, X., Chen, Y., & Yu, S. (2017). SCN8A mutations in Chinese patients with early onset epileptic encephalopathy and benign infantile seizures. BMC Medical Genetics, 18(1), 104. https://doi.org/10.1186/s12881-017-0460-1
Xiao, Y., Xiong, J., Mao, D., Liu, L., Li, J., Li, X., Li, X., Luo, H., & Liu, L. (2018). Early-onset epileptic encephalopathy with de novo SCN8A mutation. Epilepsy Research, 139, 9-13. https://doi.org/10.1016/j.eplepsyres.2017.10.017
Zaman, T., Abou Tayoun, A., & Goldberg, E. M. (2019). A single-center SCN8A-related epilepsy cohort: Clinical, genetic, and physiologic characterization. Annals of Clinical Translational Neurology, 6(8), 1445-1455. https://doi.org/10.1002/acn3.50839

Auteurs

Erva Bayraktar (E)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.

Yuanyuan Liu (Y)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Lukas Sonnenberg (L)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Department of Neurobiology, University of Tübingen, Tübingen, Germany.

Ulrike B S Hedrich (UBS)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Yildirim Sara (Y)

Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.

Ahmed Eltokhi (A)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Department of Pharmacology, University of Washington, Seattle, Washington, USA.

Hang Lyu (H)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Holger Lerche (H)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Thomas V Wuttke (TV)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Department of Neurosurgery, University of Tübingen, Tübingen, Germany.

Stephan Lauxmann (S)

Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH