Chlorin e6 Phospholipid Delivery System Featuring APN/CD13 Targeting Peptides: Cell Death Pathways, Cell Localization, In Vivo Biodistribution.

aminopeptidase N/CD13 apoptosis cell-penetrating peptide chlorin e6 colocalization heptaarginine phospholipid nanoparticles photosensitizer targeted drug delivery tumor

Journal

Pharmaceutics
ISSN: 1999-4923
Titre abrégé: Pharmaceutics
Pays: Switzerland
ID NLM: 101534003

Informations de publication

Date de publication:
18 Oct 2022
Historique:
received: 19 08 2022
revised: 07 10 2022
accepted: 17 10 2022
entrez: 27 10 2022
pubmed: 28 10 2022
medline: 28 10 2022
Statut: epublish

Résumé

We have previously designed a phospholipid delivery system for chlorin e6 to increase the efficacy of photodynamic therapy involving a second-generation photosensitizer. Further research into the matter led to double modification of the obtained nanoparticles with ligands exhibiting targeting and cell-penetrating effects: an NGR-containing peptide and heptaarginine (R7), respectively. This study investigated the cell death pathway on HT-1080 tumor cells after treatment with the proposed compositions: the chlorin e6 phospholipid composition and the two-peptide chlorin e6 phospholipid composition. It was demonstrated that most of the cells died by apoptosis. Colocalization analysis of chlorin e6 in the phospholipid composition with two peptides showed mitochondria are one of the targets of the photosensitizer. An HT-1080 tumor-bearing mouse model was used to evaluate the biodistribution of the drug in tumor, liver, and kidney tissues after administration of the study compositions in comparison with free chlorin e6. The photosensitizer mostly accumulated in the tumor tissue of mice administered the phospholipid compositions, and accumulation was increased 2-fold with the peptide-containing composition and approximately 1.5-fold with the unenhanced composition, as compared with free chlorin e6. The enhancement of the chlorin e6 phospholipid composition with targeting and cell-penetrating peptides was found to be effective both in vitro and in vivo.

Identifiants

pubmed: 36297658
pii: pharmaceutics14102224
doi: 10.3390/pharmaceutics14102224
pmc: PMC9610949
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : The Ministry of Education and Science of the Russian Federation
ID : 122030100170-5

Références

Biochim Biophys Acta. 2007 Nov;1768(11):2748-56
pubmed: 17692283
Trends Pharmacol Sci. 2021 Oct;42(10):857-869
pubmed: 34334251
Biochim Biophys Acta Rev Cancer. 2021 Dec;1876(2):188641
pubmed: 34695533
J Am Chem Soc. 2004 Aug 11;126(31):9506-7
pubmed: 15291531
World J Stem Cells. 2020 Jul 26;12(7):562-584
pubmed: 32843914
FEBS Lett. 2010 May 3;584(9):1806-13
pubmed: 19925791
Photodiagnosis Photodyn Ther. 2016 Sep;15:53-8
pubmed: 27181460
Biomed Pharmacother. 2021 Feb;134:111154
pubmed: 33360931
J Control Release. 2011 Sep 25;154(3):298-305
pubmed: 21640146
Biomed Res Int. 2021 Mar 10;2021:6642973
pubmed: 33778075
Anticancer Agents Med Chem. 2012 Mar;12(3):239-46
pubmed: 22263803
Cancers (Basel). 2019 May 08;11(5):
pubmed: 31071967
Mol Med Rep. 2017 May;15(5):2925-2930
pubmed: 28358432
Int J Mol Sci. 2020 Sep 19;21(18):
pubmed: 32961826
IUBMB Life. 2010 Mar;62(3):183-93
pubmed: 20101631
Nat Commun. 2021 Apr 22;12(1):2390
pubmed: 33888699
Anal Chem. 2021 Apr 6;93(13):5383-5393
pubmed: 33769789
Int J Biochem Cell Biol. 2008;40(2):227-35
pubmed: 17822943
Biophys J. 2011 May 18;100(10):2422-31
pubmed: 21575576
Mitochondrion. 2007 Feb-Apr;7(1-2):63-71
pubmed: 17296332
FEBS Open Bio. 2018 Jan 02;8(2):201-210
pubmed: 29435410
Biomaterials. 2021 Aug;275:120959
pubmed: 34147717
Sci Rep. 2020 Apr 2;10(1):5809
pubmed: 32242067
Photochem Photobiol Sci. 2015 Dec;14(12):2203-12
pubmed: 26496965
Front Pharmacol. 2019 Apr 16;10:369
pubmed: 31057402
Biomaterials. 2014 May;35(14):4368-81
pubmed: 24565519
Materials (Basel). 2013 Mar 06;6(3):817-840
pubmed: 28809342
Biomater Sci. 2017 Dec 19;6(1):79-90
pubmed: 29142997
Int J Pharm. 2017 Aug 7;528(1-2):1-7
pubmed: 28571905
Ann Transl Med. 2017 Apr;5(8):183
pubmed: 28616398
J Pept Sci. 2020 Feb;26(2):e3234
pubmed: 31788907
Nanotechnology. 2018 Jun 22;29(25):255101
pubmed: 29620538
J Control Release. 2017 Aug 28;260:12-21
pubmed: 28527734
Photodiagnosis Photodyn Ther. 2005 Mar;2(1):1-23
pubmed: 25048553
J Biomed Opt. 2008 Jan-Feb;13(1):011007
pubmed: 18315356
Photodiagnosis Photodyn Ther. 2016 Sep;15:133-8
pubmed: 27444887
ACS Appl Mater Interfaces. 2016 Feb 10;8(5):3287-94
pubmed: 26761130

Auteurs

Yulia A Tereshkina (YA)

Institute of Biomedical Chemistry, 10 Pogodinskaya St., 119121 Moscow, Russia.

Lyubov V Kostryukova (LV)

Institute of Biomedical Chemistry, 10 Pogodinskaya St., 119121 Moscow, Russia.

Elena G Tikhonova (EG)

Institute of Biomedical Chemistry, 10 Pogodinskaya St., 119121 Moscow, Russia.

Yulia Yu Khudoklinova (YY)

Institute of Biomedical Chemistry, 10 Pogodinskaya St., 119121 Moscow, Russia.

Nadezhda A Orlova (NA)

Institute of Biomedical Chemistry, 10 Pogodinskaya St., 119121 Moscow, Russia.

Alisa M Gisina (AM)

Institute of Biomedical Chemistry, 10 Pogodinskaya St., 119121 Moscow, Russia.

Galina E Morozevich (GE)

Institute of Biomedical Chemistry, 10 Pogodinskaya St., 119121 Moscow, Russia.

Pavel A Melnikov (PA)

V. Serbsky National Medical Research Center for Psychiatry and Narcology, V. Serbsky National Medical Research Center for Psychiatry and Narcology, 23, Kropotkinsky Lane, 119034 Moscow, Russia.

Vadim S Pokrovsky (VS)

Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 23 Kashirskoe Shosse St., 115478 Moscow, Russia.

Classifications MeSH