Nonlinear Strong Coupling by Second-Harmonic Generation Enhancement in Plasmonic Nanopatch Antennas.

nanocavity nonlinear optics patch antenna plasmonics second harmonic generation

Journal

Advanced optical materials
ISSN: 2195-1071
Titre abrégé: Adv Opt Mater
Pays: Germany
ID NLM: 101661727

Informations de publication

Date de publication:
18 Aug 2022
Historique:
entrez: 24 10 2022
pubmed: 25 10 2022
medline: 25 10 2022
Statut: ppublish

Résumé

Enhanced electromagnetic fields within plasmonic nanocavity mode volumes enable multiple significant effects that lead to applications in both the linear and nonlinear optical regimes. In this work, we demonstrate enhanced second harmonic generation from individual plasmonic nanopatch antennas which are formed by separating silver nanocubes from a smooth gold film using a sub-10 nm zinc oxide spacer layer. When the nanopatch antennas are excited at their fundamental plasmon frequency, a 10

Identifiants

pubmed: 36275124
doi: 10.1002/adom.202200510
pmc: PMC9586148
mid: NIHMS1810943
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : NCI NIH HHS
ID : R15 CA238890
Pays : United States

Déclaration de conflit d'intérêts

Conflict of Interests The authors declare no conflict of interest.

Références

Sci Rep. 2016 Jun 27;6:28746
pubmed: 27345755
Nano Lett. 2019 Jan 9;19(1):165-172
pubmed: 30525669
J Chem Phys. 2020 Mar 7;152(9):094706
pubmed: 33480709
J Microsc. 2008 Feb;229(Pt 2):233-9
pubmed: 18304078
Nature. 2014 Jul 3;511(7507):65-9
pubmed: 24990746
Opt Express. 2003 Jun 16;11(12):1385-91
pubmed: 19466009
Nat Nanotechnol. 2014 Apr;9(4):290-4
pubmed: 24608232
Nat Commun. 2015 Jul 27;6:7788
pubmed: 26212857
Nano Lett. 2007 May;7(5):1251-5
pubmed: 17397232
Nature. 2008 Jun 5;453(7196):757-60
pubmed: 18528390
Nano Lett. 2007 Apr;7(4):1013-7
pubmed: 17375965
Nano Lett. 2021 Feb 24;21(4):1599-1605
pubmed: 33306403
Nat Biotechnol. 2003 Nov;21(11):1369-77
pubmed: 14595365
Opt Lett. 2016 Jun 15;41(12):2684-7
pubmed: 27304263
Nano Lett. 2016 Sep 14;16(9):5962-6
pubmed: 27531635
J Vis Exp. 2016 May 28;(111):
pubmed: 27285421
Chem Rev. 2010 Sep 8;110(9):5332-65
pubmed: 20469927
Opt Express. 2018 Aug 6;26(16):20718-20725
pubmed: 30119377
Nano Lett. 2013;13(12):5866-72
pubmed: 24199752
Nano Lett. 2009 Nov;9(11):3801-4
pubmed: 19697892
Phys Rev Lett. 2012 Jun 29;108(26):263905
pubmed: 23004982
Nature. 2012 Dec 6;492(7427):86-9
pubmed: 23222613
Nano Lett. 2016 May 11;16(5):3155-9
pubmed: 27050296
Appl Phys Lett. 2014 Jan 27;104(4):043108
pubmed: 24753622
Nano Lett. 2014 Aug 13;14(8):4797-802
pubmed: 25020029
Phys Rev Lett. 2003 Jan 10;90(1):013903
pubmed: 12570612
Appl Opt. 2001 Oct 20;40(30):5436-8
pubmed: 18364825
Nature. 2013 Oct 3;502(7469):80-4
pubmed: 24091976
Nano Lett. 2014 May 14;14(5):2867-72
pubmed: 24730433
Sci Rep. 2017 Aug 29;7(1):9776
pubmed: 28852097
ACS Photonics. 2020 Dec 16;7(12):3333-3340
pubmed: 33365359
Nat Methods. 2006 Jan;3(1):47-53
pubmed: 16369553

Auteurs

Bryson Krause (B)

Department of Physics and Material Science, University of Memphis, Memphis, TN 38152.

Dhananjay Mishra (D)

Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588.

Jiyang Chen (J)

Department of Physics and Material Science, University of Memphis, Memphis, TN 38152.

Christos Argyropoulos (C)

Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588.

Thang Hoang (T)

Department of Physics and Material Science, University of Memphis, Memphis, TN 38152.

Classifications MeSH