Arl13b controls basal cell stemness properties and Hedgehog signaling in the mouse epididymis.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
19 Oct 2022
Historique:
received: 28 06 2022
accepted: 22 09 2022
revised: 09 09 2022
entrez: 19 10 2022
pubmed: 20 10 2022
medline: 22 10 2022
Statut: epublish

Résumé

Epithelial cells orchestrate a series of intercellular signaling events in response to tissue damage. While the epididymis is composed of a pseudostratified epithelium that controls the acquisition of male fertility, the maintenance of its integrity in the context of tissue damage or inflammation remains largely unknown. Basal cells of the epididymis contain a primary cilium, an organelle that controls cellular differentiation in response to Hedgehog signaling cues. Hypothesizing its contribution to epithelial homeostasis, we knocked out the ciliary component ARL13B in keratin 5-positive basal cells. In this model, the reduced size of basal cell primary cilia was associated with impaired Hedgehog signaling and the loss of KRT5, KRT14, and P63 basal cell markers. When subjected to tissue injury, the epididymal epithelium from knock-out mice displayed imbalanced rates of cell proliferation/apoptosis and failed to properly regenerate in vivo. This response was associated with changes in the transcriptomic landscape related to immune response, cell differentiation, cell adhesion, and triggered severe hypoplasia of the epithelium. Together our results indicate that the ciliary GTPase, ARL13B, participates in the transduction of the Hedgehog signaling pathway to maintain basal cell stemness needed for tissue regeneration. These findings provide new insights into the role of basal cell primary cilia as safeguards of pseudostratified epithelia.

Identifiants

pubmed: 36261680
doi: 10.1007/s00018-022-04570-1
pii: 10.1007/s00018-022-04570-1
doi:

Substances chimiques

ADP-Ribosylation Factors EC 3.6.5.2
Arl13b protein, mouse 0
GTP Phosphohydrolases EC 3.6.1.-
Hedgehog Proteins 0
Keratin-5 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

556

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Abdelmohsen SM, Osman MA, Takrouney MH, El Debeiky M, Hassan ABG, Shalaby MMAE-A, Baky Fahmy MA (2021) A spectrum of epididymis and vas deferens anomalies among children with cryptorchidism: a retrospective multi-center study. Ann Pediatr Surg 17:55. https://doi.org/10.1186/s43159-021-00111-w
doi: 10.1186/s43159-021-00111-w
Abe K, Takano H, Ito T (1982) Response of the epididymal duct in the corpus epididymidis to efferent or epididymal duct ligation in the mouse. J Reprod Fertil 64:69–72
doi: 10.1530/jrf.0.0640069 pubmed: 6275082
Aram R, Chan PTK, Cyr DG (2020) Beta-defensin126 is correlated with sperm motility in fertile and infertile men†. Biol Reprod 102:92–101. https://doi.org/10.1093/biolre/ioz171
doi: 10.1093/biolre/ioz171 pubmed: 31504198
Arrighi S (2013) Primary cilia in the basal cells of equine epididymis: a serendipitous finding. Tissue Cell 45:140–144. https://doi.org/10.1016/j.tice.2012.10.003
doi: 10.1016/j.tice.2012.10.003 pubmed: 23182032
Bangs FK, Schrode N, Hadjantonakis A-K, Anderson KV (2015) Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol 17:113–122. https://doi.org/10.1038/ncb3091
doi: 10.1038/ncb3091 pubmed: 25599390 pmcid: 4406239
Barral DC, Garg S, Casalou C, Watts GFM, Sandoval JL, Ramalho JS, Hsu VW, Brenner MB (2012) Arl13b regulates endocytic recycling traffic. Proc Natl Acad Sci USA 109:21354–21359. https://doi.org/10.1073/pnas.1218272110
doi: 10.1073/pnas.1218272110 pubmed: 23223633 pmcid: 3535586
Belgacemi R, Luczka E, Ancel J, Diabasana Z, Perotin J-M, Germain A, Lalun N, Birembaut P, Dubernard X, Mérol J-C et al (2020) Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD. EBioMedicine 51:102572. https://doi.org/10.1016/j.ebiom.2019.11.033
doi: 10.1016/j.ebiom.2019.11.033 pubmed: 31877414
Bernet A, Bastien A, Soulet D, Jerczynski O, Roy C, Bianchi-Rodrigues-Alves M, Lecours C, Tremblay M-È, Bailey JL, Robert C et al (2018) Cell-lineage specificity of primary cilia during postnatal epididymal development. Hum Reprod 33:1829–1838. https://doi.org/10.1093/humrep/dey276
doi: 10.1093/humrep/dey276 pubmed: 30239723
Björkgren I, Alvarez L, Blank N, Balbach M, Turunen H, Laajala TD, Toivanen J, Krutskikh A, Wahlberg N, Huhtaniemi I et al (2016) Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Mol Cell Endocrinol 427:143–154. https://doi.org/10.1016/j.mce.2016.03.013
doi: 10.1016/j.mce.2016.03.013 pubmed: 26987518
Boonekamp KE, Kretzschmar K, Wiener DJ, Asra P, Derakhshan S, Puschhof J, López-Iglesias C, Peters PJ, Basak O, Clevers H (2019) Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci USA 116(29):14630-14638. https://doi.org/10.1073/pnas.1715272116
doi: 10.1073/pnas.1715272116 pubmed: 31253707 pmcid: 6642409
Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12:767–778. https://doi.org/10.1016/j.devcel.2007.03.004
doi: 10.1016/j.devcel.2007.03.004 pubmed: 17488627
van de Casseye M, Schoysman R (1988) Epididymal diseases and repercussions on testicular function. Reprod Nutr Dev 28:1347–1356
pubmed: 3253905
Centonze A, Lin S, Tika E, Sifrim A, Fioramonti M, Malfait M, Song Y, Wuidart A, Van Herck J, Dannau A et al (2020) Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature 584:608–613. https://doi.org/10.1038/s41586-020-2632-y
doi: 10.1038/s41586-020-2632-y pubmed: 32848220 pmcid: 7116172
Cevik S, Hori Y, Kaplan OI, Kida K, Toivenon T, Foley-Fisher C, Cottell D, Katada T, Kontani K, Blacque OE (2010) Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans. J Cell Biol 188:953–969. https://doi.org/10.1083/jcb.200908133
doi: 10.1083/jcb.200908133 pubmed: 20231383 pmcid: 2845074
Croyle MJ, Lehman JM, O’Connor AK, Wong SY, Malarkey EB, Iribarne D, Dowdle WE, Schoeb TR, Verney ZM, Athar M et al (2011) Role of epidermal primary cilia in the homeostasis of skin and hair follicles. Development 138:1675–1685. https://doi.org/10.1242/dev.060210
doi: 10.1242/dev.060210 pubmed: 21429982 pmcid: 3074444
Cyr DG, Pinel L (2022) Emerging organoid models to study the epididymis in male reproductive toxicology. Reprod Toxicol 112:88-99. https://doi.org/10.1016/j.reprotox.2022.07.001
doi: 10.1016/j.reprotox.2022.07.001 pubmed: 35810924
Cyr DG, Dufresne J, Gregory M (2018) Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod Toxicol 81:207–219. https://doi.org/10.1016/j.reprotox.2018.08.013
doi: 10.1016/j.reprotox.2018.08.013 pubmed: 30130578
Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, Olson EN, Perantoni AO, Carroll TJ (2013) Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol 15:1035–1044. https://doi.org/10.1038/ncb2828
doi: 10.1038/ncb2828 pubmed: 23974041 pmcid: 3891676
Gigante ED, Long AB, Ben-Ami J, Caspary T (2018) Hypomorphic Smo mutant with inefficient ciliary enrichment disrupts the highest level of vertebrate Hedgehog response. Dev Biol 437:152–162. https://doi.org/10.1016/j.ydbio.2018.03.019
doi: 10.1016/j.ydbio.2018.03.019 pubmed: 29571613 pmcid: 5903954
Gigante ED, Taylor MR, Ivanova AA, Kahn RA, Caspary T (2020) ARL13B regulates Sonic hedgehog signaling from outside primary cilia. Elife 9:e50434. https://doi.org/10.7554/eLife.50434
doi: 10.7554/eLife.50434 pubmed: 32129762 pmcid: 7075693
Girardet L, Augière C, Asselin M-P, Belleannée C (2019) Primary cilia: biosensors of the male reproductive tract. Andrology. https://doi.org/10.1111/andr.12650
doi: 10.1111/andr.12650 pubmed: 31131532
Girardet L, Bernet A, Calvo E, Soulet D, Joly-Beauparlant C, Droit A, Cyr DG, Belleannée C (2020) Hedgehog signaling pathway regulates gene expression profile of epididymal principal cells through the primary cilium. FASEB J 34:7593–7609. https://doi.org/10.1096/fj.202000328R
doi: 10.1096/fj.202000328R pubmed: 32283570
Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11:331–344. https://doi.org/10.1038/nrg2774
doi: 10.1038/nrg2774 pubmed: 20395968 pmcid: 3121168
Gregory M, Dufresne J, Hermo L, Cyr D (2001) Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology 142(2):854-863. https://doi.org/10.1210/endo.142.2.7975
doi: 10.1210/endo.142.2.7975 pubmed: 11159859
Grisanti L, Revenkova E, Gordon RE, Iomini C (2016) Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway. Development 143:2160–2171. https://doi.org/10.1242/dev.132704
doi: 10.1242/dev.132704 pubmed: 27122169 pmcid: 4920172
Guen VJ, Chavarria TE, Kröger C, Ye X, Weinberg RA, Lees JA (2017) EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc Natl Acad Sci USA 114:E10532–E10539. https://doi.org/10.1073/pnas.1711534114
doi: 10.1073/pnas.1711534114 pubmed: 29158396 pmcid: 5724269
Haidl G, Allam JP, Schuppe H-C (2008) Chronic epididymitis: impact on semen parameters and therapeutic options. Andrologia 40:92–96. https://doi.org/10.1111/j.1439-0272.2007.00819.x
doi: 10.1111/j.1439-0272.2007.00819.x pubmed: 18336457
Hanoun M, Arnal-Estapé A, Maryanovich M, Zahalka AH, Bergren SK, Chua CW, Leftin A, Brodin PN, Shen MM, Guha C et al (2019) Nestin+NG2+ cells form a reserve stem cell population in the mouse prostate. Stem Cell Reports 12:1201–1211. https://doi.org/10.1016/j.stemcr.2019.04.019
doi: 10.1016/j.stemcr.2019.04.019 pubmed: 31130357 pmcid: 6565923
Hassounah NB, Nagle R, Saboda K, Roe DJ, Dalkin BL, McDermott KM (2013) Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS ONE 8:e68521. https://doi.org/10.1371/journal.pone.0068521
doi: 10.1371/journal.pone.0068521 pubmed: 23844214 pmcid: 3699526
Higginbotham H, Guo J, Yokota Y, Umberger NL, Su C-Y, Li J, Verma N, Hirt J, Ghukasyan V, Caspary T et al (2013) Arl13b-regulated cilia activities are essential for polarized radial glial scaffold formation. Nat Neurosci 16:1000–1007. https://doi.org/10.1038/nn.3451
doi: 10.1038/nn.3451 pubmed: 23817546 pmcid: 3866024
Humbert MC, Weihbrecht K, Searby CC, Li Y, Pope RM, Sheffield VC, Seo S (2012) ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting. Proc Natl Acad Sci USA 109:19691–19696. https://doi.org/10.1073/pnas.1210916109
doi: 10.1073/pnas.1210916109 pubmed: 23150559 pmcid: 3511769
Joiner AM, Green WW, McIntyre JC, Allen BL, Schwob JE, Martens JR (2015) Primary cilia on horizontal basal cells regulate regeneration of the olfactory epithelium. J Neurosci 35:13761–13772. https://doi.org/10.1523/JNEUROSCI.1708-15.2015
doi: 10.1523/JNEUROSCI.1708-15.2015 pubmed: 26446227 pmcid: 4595624
Kim B, Breton S (2020) Androgens are essential for epithelial cell recovery after efferent duct ligation in the initial segment of the mouse epididymis†. Biol Reprod 102:76–83. https://doi.org/10.1093/biolre/ioz152
doi: 10.1093/biolre/ioz152 pubmed: 31403160
Kim B, Roy J, Shum WWC, Da Silva N, Breton S (2015) Role of testicular luminal factors on Basal cell elongation and proliferation in the mouse epididymis. Biol Reprod 92:9. https://doi.org/10.1095/biolreprod.114.123943
doi: 10.1095/biolreprod.114.123943 pubmed: 25411392
Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M et al (2018) Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175:372-386.e17. https://doi.org/10.1016/j.cell.2018.08.067
doi: 10.1016/j.cell.2018.08.067 pubmed: 30270042 pmcid: 6176871
Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10:634–642
pubmed: 2105456 pmcid: 360861
Kong JH, Siebold C, Rohatgi R (2019) Biochemical mechanisms of vertebrate hedgehog signaling. Development. https://doi.org/10.1242/dev.166892
doi: 10.1242/dev.166892 pubmed: 31092502 pmcid: 6550017
Larkins CE, Aviles GDG, East MP, Kahn RA, Caspary T (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 22:4694–4703. https://doi.org/10.1091/mbc.E10-12-0994
doi: 10.1091/mbc.E10-12-0994 pubmed: 21976698 pmcid: 3226485
Li Q, Alsaidan OA, Rai S, Wu M, Shen H, Beharry Z, Almada LL, Fernandez-Zapico ME, Wang L, Cai H (2018) Stromal Gli signaling regulates the activity and differentiation of prostate stem and progenitor cells. J Biol Chem 293:10547–10560. https://doi.org/10.1074/jbc.RA118.003255
doi: 10.1074/jbc.RA118.003255 pubmed: 29773652 pmcid: 6036221
Li Y, Tian X, Ma M, Jerman S, Kong S, Somlo S, Sun Z (2016) Deletion of ADP ribosylation factor-like GTPase 13B leads to kidney cysts. J Am Soc Nephrol 27:3628–3638. https://doi.org/10.1681/ASN.2015091004
doi: 10.1681/ASN.2015091004 pubmed: 27153923 pmcid: 5118478
Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL et al (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950. https://doi.org/10.1016/s0896-6273(03)00561-0
doi: 10.1016/s0896-6273(03)00561-0 pubmed: 12971894
Mandon M, Hermo L, Cyr DG (2015) Isolated rat epididymal basal cells share common properties with adult stem cells1. Biol Reprod. https://doi.org/10.1095/biolreprod.115.133967
doi: 10.1095/biolreprod.115.133967 pubmed: 26400399 pmcid: 4712003
Mariani LE, Bijlsma MF, Ivanova AA, Suciu SK, Kahn RA, Caspary T (2016) Arl13b regulates Shh signaling from both inside and outside the cilium. Mol Biol Cell. https://doi.org/10.1091/mbc.E16-03-0189
doi: 10.1091/mbc.E16-03-0189 pubmed: 27682584 pmcid: 5170560
McCormick TS, Weinberg A (2010) Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontol 2000(54):195–206. https://doi.org/10.1111/j.1600-0757.2010.00373.x
doi: 10.1111/j.1600-0757.2010.00373.x
Meade KG, O’Farrelly C (2019) β-defensins: farming the microbiome for homeostasis and health. Front Immunol 9:3072. https://doi.org/10.3389/fimmu.2018.03072
doi: 10.3389/fimmu.2018.03072 pubmed: 30761155 pmcid: 6362941
Mitchell EH, Serra R (2014) Normal mammary development and function in mice with Ift88 deleted in MMTV- and K14-Cre expressing cells. Cilia 3:4. https://doi.org/10.1186/2046-2530-3-4
doi: 10.1186/2046-2530-3-4 pubmed: 24594320 pmcid: 3942223
Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, Zhang B, Solomon GM, Turner B, Bihler H, Harrington J, Lapey A, Channick C, Keyes C, Freund A, Artandi S, Mense M, Rowe S, Engelhardt JF, Hsu YC, Rajagopal J (2016) Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19(2):217-231. https://doi.org/10.1016/j.stem.2016.05.012
doi: 10.1016/j.stem.2016.05.012 pubmed: 27320041 pmcid: 4975684
Narciandi F, Fernandez-Fuertes B, Khairulzaman I, Jahns H, King D, Finlay EK, Mok KH, Fair S, Lonergan P, Farrelly CO et al (2016) Sperm-coating beta-defensin 126 is a dissociation-resistant dimer produced by epididymal epithelium in the bovine reproductive tract. Biol Reprod 95:121. https://doi.org/10.1095/biolreprod.116.138719
doi: 10.1095/biolreprod.116.138719 pubmed: 27707712 pmcid: 5333941
Nazari-Shafti TZ, Freisinger E, Roy U, Bulot CT, Senst C, Dupin CL, Chaffin AE, Srivastava SK, Mondal D, Alt EU et al (2011) Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection. Retrovirology 8:3. https://doi.org/10.1186/1742-4690-8-3
doi: 10.1186/1742-4690-8-3 pubmed: 21226936 pmcid: 3025950
Nigg EA, Stearns T (2011) The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13:1154–1160. https://doi.org/10.1038/ncb2345
doi: 10.1038/ncb2345 pubmed: 21968988 pmcid: 3947860
Ning G, Bijron JG, Yamamoto Y, Wang X, Howitt BE, Herfs M, Yang E, Hong Y, Cornille M, Wu L et al (2014) The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium. J Pathol 234:478–487. https://doi.org/10.1002/path.4417
doi: 10.1002/path.4417 pubmed: 25130537 pmcid: 4229427
Nozaki S, Katoh Y, Terada M, Michisaka S, Funabashi T, Takahashi S, Kontani K, Nakayama K (2017) Regulation of ciliary retrograde protein trafficking by the Joubert syndrome proteins ARL13B and INPP5E. J Cell Sci 130:563–576. https://doi.org/10.1242/jcs.197004
doi: 10.1242/jcs.197004 pubmed: 27927754
Pala R, Alomari N, Nauli SM (2017) Primary cilium-dependent signaling mechanisms. Int J Mol Sci. https://doi.org/10.3390/ijms18112272
doi: 10.3390/ijms18112272 pubmed: 29143784 pmcid: 5713242
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45
doi: 10.1093/nar/29.9.e45 pubmed: 11328886 pmcid: 55695
Pinel L, Cyr DG (2021) Self-renewal and differentiation of rat epididymal basal cells using a novel in vitro organoid model†. Biol Reprod 105:987–1001. https://doi.org/10.1093/biolre/ioab113
doi: 10.1093/biolre/ioab113 pubmed: 34104939 pmcid: 8511666
Pinel L, Mandon M, Cyr DG (2019) Tissue regeneration and the epididymal stem cell. Andrology 7:618–630. https://doi.org/10.1111/andr.12635
doi: 10.1111/andr.12635 pubmed: 31033244
Rinaldi VD, Donnard E, Gellatly K, Rasmussen M, Kucukural A, Yukselen O, Garber M, Sharma U, Rando OJ (2020) An atlas of cell types in the mouse epididymis and vas deferens. Elife 9:e55474. https://doi.org/10.7554/eLife.55474
doi: 10.7554/eLife.55474 pubmed: 32729827 pmcid: 7426093
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019
doi: 10.1038/nmeth.2019 pubmed: 22743772
Schuppe H-C, Pilatz A, Hossain H, Diemer T, Wagenlehner F, Weidner W (2017) Urogenital infection as a risk factor for male infertility. Dtsch Arztebl Int 114:339–346. https://doi.org/10.3238/arztebl.2017.0339
doi: 10.3238/arztebl.2017.0339 pubmed: 28597829 pmcid: 5470348
Seiler P, Wenzel I, Wagenfeld A, Yeung CH, Nieschlag E, Cooper TG (1998) The appearance of basal cells in the developing murine epididymis and their temporal expression of macrophage antigens. Int J Androl 21:217–226. https://doi.org/10.1046/j.1365-2605.1998.00116.x
doi: 10.1046/j.1365-2605.1998.00116.x pubmed: 9749352
Seixas C, Choi SY, Polgar N, Umberger NL, East MP, Zuo X, Moreiras H, Ghossoub R, Benmerah A, Kahn RA et al (2016) Arl13b and the exocyst interact synergistically in ciliogenesis. Mol Biol Cell 27:308–320. https://doi.org/10.1091/mbc.E15-02-0061
doi: 10.1091/mbc.E15-02-0061 pubmed: 26582389 pmcid: 4713133
Shum WWC, Da Silva N, McKee M, Smith PJS, Brown D, Breton S (2008) Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 135:1108–1117. https://doi.org/10.1016/j.cell.2008.10.020
doi: 10.1016/j.cell.2008.10.020 pubmed: 19070580 pmcid: 2646085
Szczepny A, Hime GR, Loveland KL (2006) Expression of hedgehog signalling components in adult mouse testis. Dev Dyn 235:3063–3070. https://doi.org/10.1002/dvdy.20931
doi: 10.1002/dvdy.20931 pubmed: 16958114
Sztul E, Chen P-W, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee F-JS, Randazzo PA, Santy LC, Schürmann A et al (2019) ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 30:1249–1271. https://doi.org/10.1091/mbc.E18-12-0820
doi: 10.1091/mbc.E18-12-0820 pubmed: 31084567 pmcid: 6724607
Todoric J, Strobl B, Jais A, Boucheron N, Bayer M, Amann S, Lindroos J, Teperino R, Prager G, Bilban M et al (2011) Cross-talk between interferon-γ and hedgehog signaling regulates adipogenesis. Diabetes 60:1668–1676. https://doi.org/10.2337/db10-1628
doi: 10.2337/db10-1628 pubmed: 21536945 pmcid: 3114396
Tong CK, Han Y-G, Shah JK, Obernier K, Guinto CD, Alvarez-Buylla A (2014) Primary cilia are required in a unique subpopulation of neural progenitors. Proc Natl Acad Sci USA 111:12438–12443. https://doi.org/10.1073/pnas.1321425111
doi: 10.1073/pnas.1321425111 pubmed: 25114218 pmcid: 4151724
Turner TT (2006) Sonic Hedgehog pathway inhibition alters epididymal function as assessed by the development of sperm motility. J Androl 27:225–232. https://doi.org/10.2164/jandrol.05114
doi: 10.2164/jandrol.05114 pubmed: 16278368
Turner TT, Bomgardner D, Jacobs JP (2004) Sonic Hedgehog pathway genes are expressed and transcribed in the adult mouse epididymis. J Androl 25:514–522. https://doi.org/10.1002/j.1939-4640.2004.tb02822.x
doi: 10.1002/j.1939-4640.2004.tb02822.x pubmed: 15223840
Turner TT, Johnston DS, Finger JN, Jelinsky SA (2007) Differential gene expression among the proximal segments of the rat epididymis is lost after efferent duct ligation. Biol Reprod 77:165–171. https://doi.org/10.1095/biolreprod.106.059493
doi: 10.1095/biolreprod.106.059493 pubmed: 17377138
Zhou CX, Zhang Y-L, Xiao L, Zheng M, Leung KM, Chan MY, Lo PS, Tsang LL, Wong HY, Ho LS et al (2004) An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nat Cell Biol 6:458–464. https://doi.org/10.1038/ncb1127
doi: 10.1038/ncb1127 pubmed: 15122269
Zhu M, Iwano T, Takeda S (2020) Fallopian tube basal stem cells reproducing the epithelial sheets in vitro-stem cell of fallopian epithelium. Biomolecules 10:E1270. https://doi.org/10.3390/biom10091270
doi: 10.3390/biom10091270

Auteurs

Laura Girardet (L)

Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada.

Daniel G Cyr (DG)

Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada.
Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.

Clémence Belleannée (C)

Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada. Clemence.Belleannee@crchudequebec.ulaval.ca.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH