Effect of Transglutaminase Post-Treatment on the Stability and Swelling Behavior of Casein Micro-Particles.
casein microparticle
cross-linking
dynamic model simulation
stability
structural model
swelling
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
05 Oct 2022
05 Oct 2022
Historique:
received:
28
07
2022
revised:
18
09
2022
accepted:
20
09
2022
entrez:
14
10
2022
pubmed:
15
10
2022
medline:
18
10
2022
Statut:
epublish
Résumé
Casein microparticles are produced by flocculation of casein micelles due to volume exclusion of pectin and subsequent stabilization by film drying. Transglutaminase post-treatment alters their stability, swelling behavior, and internal structure. Untreated particles sediment due to their size and disintegrate completely after the addition of sodium dodecyl sulfate. The fact that transglutaminase-treated microparticles only sediment at comparable rates under these conditions shows that their structural integrity is not lost due to the detergent. Transglutaminase-treated particles reach an equilibrium final size after swelling instead of decomposing completely. By choosing long treatment times, swelling can also be completely suppressed as experiments at pH 11 show. In addition, deswelling effects also occur within the swelling curves, which enhance with increasing transglutaminase treatment time and are ascribed to the elastic network of cross-linked caseins. We propose a structural model for transglutaminase-treated microparticles consisting of a core of uncross-linked and a shell of cross-linked caseins. A dynamic model describes all swelling curves by considering both casein fractions in parallel. The characteristic correlation length of the internal structure of swollen casein microparticles is pH-independent and decreases with increasing transglutaminase treatment time, as observed also for the equilibrium swelling value of uncross-linked caseins.
Identifiants
pubmed: 36233139
pii: ijms231911837
doi: 10.3390/ijms231911837
pmc: PMC9570279
pii:
doi:
Substances chimiques
Caseins
0
Cross-Linking Reagents
0
Detergents
0
Micelles
0
Sodium Dodecyl Sulfate
368GB5141J
Pectins
89NA02M4RX
Transglutaminases
EC 2.3.2.13
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
IEEE Trans Nanobioscience. 2018 Oct;17(4):555-559
pubmed: 30371384
Eur Biophys J. 2021 Sep;50(6):847-866
pubmed: 33866398
Food Chem. 2020 Jun 1;314:126063
pubmed: 31951886
Food Chem. 2019 Sep 1;291:231-238
pubmed: 31006464
Nanomaterials (Basel). 2022 Jun 28;12(13):
pubmed: 35808049
Foods. 2021 Aug 23;10(8):
pubmed: 34441743
J Agric Food Chem. 2006 Oct 18;54(21):8288-93
pubmed: 17032041
J Chem Phys. 2007 Jan 28;126(4):045101
pubmed: 17286511
Langmuir. 2014 Sep 2;30(34):10167-75
pubmed: 25117401
Biomolecules. 2022 Feb 08;12(2):
pubmed: 35204772
J Dairy Sci. 2006 Jun;89(6):1906-14
pubmed: 16702254
Int J Biol Macromol. 2015 Mar;74:44-8
pubmed: 25482531
Macromol Biosci. 2006 Jun 16;6(6):393-402
pubmed: 16761272
J Colloid Interface Sci. 2007 Nov 15;315(2):685-92
pubmed: 17681510
Crit Rev Food Sci Nutr. 2012;52(4):291-311
pubmed: 22332594
Top Curr Chem (Cham). 2017 Aug;375(4):71
pubmed: 28712055
J Dairy Sci. 2003 May;86(5):1556-63
pubmed: 12778566
J Dairy Res. 2012 Nov;79(4):414-21
pubmed: 22849882
Sci Rep. 2019 Dec 6;9(1):18522
pubmed: 31811249
Polymers (Basel). 2022 Mar 24;14(7):
pubmed: 35406187
Biophys J. 2010 Aug 9;99(4):1262-7
pubmed: 20713011
Antioxidants (Basel). 2022 Mar 11;11(3):
pubmed: 35326186
Int J Pharm. 2009 May 21;373(1-2):41-7
pubmed: 19429286
Biophys J. 2010 Dec 1;99(11):3754-62
pubmed: 21112300
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Biotechnol J. 2007 Apr;2(4):456-61
pubmed: 17309046
Biomacromolecules. 2007 Apr;8(4):1300-5
pubmed: 17328570
Annu Rev Food Sci Technol. 2012;3:449-67
pubmed: 22385169