Bipolar Electrochemistry - A Powerful Tool for Micro/Nano-Electrochemistry.

analytical application for single entities gradient potential distribution micro/nano-electrochemistry micro/nanoscale bipolar electrochemistry wireless nature

Journal

ChemistryOpen
ISSN: 2191-1363
Titre abrégé: ChemistryOpen
Pays: Germany
ID NLM: 101594811

Informations de publication

Date de publication:
12 2022
Historique:
revised: 10 09 2022
received: 26 07 2022
pubmed: 14 10 2022
medline: 6 12 2022
entrez: 13 10 2022
Statut: ppublish

Résumé

The understanding of areas for "classical" electrochemistry (including catalysis, electrolysis and sensing) and bio-electrochemistry at the micro/nanoscale are focus on the continued performance facilitations or the exploration of new features. In the recent 20 years, a different mode for driving electrochemistry has been proposed, which is called as bipolar electrochemistry (BPE). BPE has garnered attention owing to the interesting properties: (i) its wireless nature facilitates electrochemical sensing and high throughput analysis; (ii) the gradient potential distribution on the electrodes surface is a useful tool for preparing gradient surfaces and materials. These permit BPE to be used for modification and analytical applications on a micro/nanoscale surface. This review aims to introduce the principle and classification of BPE and BPE at micro/nanoscale; sort out its applications in electrocatalysis, electrosynthesis, electrophoresis, power supply and so on; explain the confined BPE and summarize its analytical application for single entities (single cells, single particles and single molecules), and discuss finally the important direction of micro/nanoscale BPE.

Identifiants

pubmed: 36229230
doi: 10.1002/open.202200163
pmc: PMC9716041
doi:

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202200163

Informations de copyright

© 2022 The Authors. Published by Wiley-VCH GmbH.

Références

 
R. K. Anand, E. Sheridan, D. Hlushkou, U. Tallarek, R. M. Crooks, Lab Chip 2011, 11, 518-527;
S. E. Fosdick, K. N. Knust, K. Scida, R. M. Crooks, Angew. Chem. Int. Ed. 2013, 52, 2-21.
M. Atobe, Wiley: Hoboken, NJ, 2014; Chapter 1.
R. M. Crooks, ChemElectroChem 2016, 3, 357-359.
 
J. R. Backhurst, J. M. Coulson, F. Goodridge, R. E. Plimley, M. Fleischmann, J. Electrochem. Soc. 1969, 116, 1600-1607;
M. Fleischmann, J. W. Oldfield, J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, 211-230;
F. Goodridge, C. J. H. King, A. R. Wright, Electrochim. Acta 1977, 22, 347-352.
 
K. L. Rahn and R. K. Anand, Anal. Chem. 2021, 93, 103-123;
L. Bouffier, D. Zigah, N. Sojic, A. Kuhn, Annu. Rev. Anal. Chem. 2021, 14, 65-86;
N. Shida, Y. Zhou, S. Inagi, Acc. Chem. Res. 2019, 52, 2598-2608;
L. Koefoed, S. U. Pedersen, K. Daasbjerg, Curr. Opin. Electrochem. 2017, 2, 13-17.
M. Z. Bazant, K. T. Chu, B. J. Bayly, SIAM J. Appl. Math. 2005, 65, 1463-1484.
G. M. Whitesides, A. D. Stroock, Phys. Today 2001, 54, 42-48.
 
S. E. Fosdick, K. N. Knust, K. Scida, R. M. Crooks, Angew. Chem. Int. Ed. 2013, 52, 10438-10456;
Angew. Chem. 2013, 125, 10632-10651;
G. Loget, D. Zigah, L. Bouffier, N. Sojic, A. Kuhn, Acc. Chem. Res. 2013, 46, 2513-2523.
 
G. Loget, J. Roche, A. Kuhn, Adv. Mater. 2012, 24, 5111-5116;
C. Warakulwit, T. Nguyen, J. Majimel, M.-H. Delville, V. Lapeyre, P. Garrigue, V. Ravaine, J. Limtrakul, A. Kuhn, Nano Lett. 2008, 8, 500-504.
 
Y.-L. Ying, Y−X. Hu, R. Gao, R. Yu, Z. Gu, L. P. Lee, Y−T. Long, J. Am. Chem. Soc. 2018, 140, 5385-5392;
A. Ismail, S. Voci, P. Pham, L. Leroy, A. Maziz, L. Descamps, A. Kuhn, P. Mailley, T. Livache, A. Buhot, T. Leichlé, A. Bouchet-Spinelli, N. Sojic, Anal. Chem. 2019, 91, 8900-8907;
A. Eden, K. Scida, N. Arroyo-Curras, J. C. T. Eijkel, C. D. Meinhart, S. Pennathur, Electrochim. Acta 2020, 330, 135275;
R. Hao, Y. Fan, B. Zhang, J. Am. Chem. Soc. 2017, 139, 12274-12282.
N. Karimian, P. Hashemi, A. Afkhami, H. Bagheri, Curr. Opin. Electrochem. 2019, 17, 30-37.
 
J. Duval, J. M. Kleijn, H. P. van Leeuwen, J. Electroanal. Chem. 2001, 505, 1-11;
J. Duval, M. Minor, J. Cecilia, H. P. Van Leeuwen, J. Phys. Chem. B 2003, 107, 4143-4155;
J. F. Duval, J. Buffle, H. P. van Leeuwen, J. Phys. Chem. B 2006, 110, 6081-6094.
S. Cattarin, M. M. Musiani, J. Electrochem. Soc. 1995, 142, 3786-3792.
J. P. Guerrette, S. M. Oja, B. Zhang, Anal. Chem. 2012, 84, 1609-1616.
 
S. M. Oja, B. Zhang, ChemElectroChem 2016, 3, 457-464;
X.-W. Zheng, Chin. J. Anal. Chem. 2014, 42, 1220-1223;
S. Wu, Z. Zhou, L. Xu, B. Su, Q. Fang, Biosens. Bioelectron. 2014, 53, 148-153.
K. F. Chow, B. Y. Chang, B. A. Zaccheo, F. Mavré, R. M. Crooks, J. Am. Chem. Soc. 2010, 132, 9228-9229.
S. E. Fosdick, R. M. Crooks, J. Am. Chem. Soc. 2012, 134, 863-866.
S. E. Fosdick, S. P. Berglund, C. B. Mullins, R. M. Crooks, ACS Catal. 2014, 4, 1332-1339.
R. Ramakrishnan, C. Shannon, Langmuir 2010, 26, 4602-4606.
 
G. Loget, G. Larcade, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, M. H. Delville, V. Ravaine, A. Kuhn, Electrochim. Acta 2010, 55, 8116-8120;
G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, M. H. Delville, A. Kuhn, Chem. Mater. 2011, 23, 2595-2599.
Y. Koizumi, H. Nishiyama, I. Tomitaa, S. Inagi, Chem. Commun. 2018, 54, 10475-10478.
G. Loget, A. Kuhn, J. Am. Chem. Soc. 2010, 132, 15918-15919.
J. C. Bradley, S. Babu, B. Carroll, A. Mittal, J. Electroanal. Chem. 2002, 522, 75-85.
S. Baek, S. R. Kwon, S. Y. Yeon, S.-H. Yoon, C. M. Kang, S. H. Han, D. Lee, T. D. Chung, Anal. Chem. 2018, 90, 4749-4755.
 
X. Zhang, L. Zhang, Q. Zhai, W. Gu, J. Li, E. Wang, Anal. Chem. 2016, 88, 2543-2547;
E. Jaworska, A. Michalska, K. Maksymiuk, Electrochim. Acta 2018, 284, 321-327;
I. Dumitrescu, R. K. Anand, S. E. Fosdick, R. M. Crooks, J. Am. Chem. Soc. 2011, 133, 4687-4689.
 
E. Jaworska, A. Michalska, K. Maksymiuk, Electroanalysis 2020, 32, 812-819;
E. Jaworska, A. Michalska, K. Maksymiuk, Anal. Chem. 2019, 91, 15525-15531.
X. Ma, L. Qi, W. Gao, F. Yuan, Y. Xia, B. Lou, G. Xu, Electrochim. Acta 2019, 308, 20-24.
 
X. Shi, R. Gao, Y.-L. Ying, W. Si, Y.-F. Chen, Y.-T. Long, ACS Sens. 2016, 1, 1086-1090;
Y.-L. Ying, Y.-X. Hu, R. Gao, R.-J. Yu, Z. Gu, L. P. Lee, Y.-T. Long, J. Am. Chem. Soc. 2018, 140, 5385-5392;
I. Notingher, A. Elfick, J. Phys. Chem. B 2005, 109, 15699-15706;
H. Li, T. Zhang, H. Zhou, Z. Zhang, M. Liu, C. Wang, ChemElectroChem 2021, 8, 1473-1477.
 
C. Ye, Y. Jiao, D. Chao, T. Ling, J. Shan, B. Zhang, Q. Gu, K. Davey, H. Wang, S.-Z. Qiao, Adv. Mater. 2020, 32, 1907557;
S. Xu, W. Zhang, X. Liu, X. Han, X. Bao, J. Am. Chem. Soc. 2009, 131, 13722-13727.
 
M. Z. Bazant, K. T. Chu, B. J. Bayly, SIAM J. Appl. Math. 2005, 65, 1463-1484;
K. J. Vetter, E Academic Press, Inc.: New York 1967;
J. S. Newman, Prentice-Hall, Inc.: New Jersey 1973.
A. Eden, K. Scida, N. Arroyo-Currás, J. C. T. Eijkel, C. D. Meinhart, S. Pennathur, J. Phys. Chem. C 2019, 123, 5353-5364.
R. Gao, L. F. Cui, L. Q. Ruan, Y. L. Ying, Y. T. Long, JoVE 2019, 145, e59003.
R. Gao, Y. Lin, Y.-L. Ying, Y.-X. Hu, S.-W. Xu, L.-Q. Ruan, R.-J. Yu, Y.-J. Li, H.-W. Li, L.-F. Cui, Y.-T. Long, Nat. Protoc. 2019, 14, 2015-2035.
 
M. M. Richter, Chem. Rev. 2004, 104, 3003-3036;
W. Miao, Chem. Rev. 2008, 108, 2506-2553.
A. Arora, J. C. Eijkel, W. E. Morf, A. Manz, Anal. Chem. 2001, 73, 3282-3288.
M.-S. Wu, D.-J. Yuan, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2013, 85, 11960-11965.
M.-S. Wu, B.-Y. Xu, H.-W. Shi, J.-J. Xu, H.-Y. Chen, Lab Chip 2011, 11, 2720-2724.
M.-S. Wu, Z. Liu, J.-J. Xu, H.-Y. Chen, ChemElectroChem 2016, 3, 429-435.
S. G. Ge, J. G. Zhao, S. P. Wang, F. F. Lan, M. Yan, J. H. Yu, Biosens. Bioelectron. 2018, 102, 411-417.
H.-W. Shi, W. Zhao, Z. Liu, X.-C. Liu, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2016, 88, 8795-8801.
J. T. Cao, Y. L. Wang, J. J. Zhang, Y. X. Dong, F. R. Liu, S. W. Ren, Y. M. Liu, Anal. Chem. 2018, 90, 10334-10339.
Y. Wang, R. Jin, N. Sojic, D. Jiang, H.-Y. Chen, Angew. Chem. Int. Ed. 2020, 59, 10416-10420;
Angew. Chem. 2020, 132, 10502-10506.
Y. Wang, D. Jiang, H.-Y. Chen, CCS Chem. 2021, 3, 2268-2274.
R. Gao, Y.-L. Ying, Y.-J. Li, Y.-X. Hu, R.-J. Yu, Y. Lin, Y.-T. Long, Angew. Chem. Int. Ed. 2018, 57, 1011-1015;
Angew. Chem. 2018, 130, 1023-1027.
C. Han, R. Hao, Y. Fan, M. A. Edwards, H. Gao, B. Zhang, Langmuir 2019, 35, 7180-7190.
S.-M. Lu, Y.-J. Li, J.-F. Zhang, Y. Wang, Y.-L. Ying, Y.-T. Long, Anal. Chem. 2019, 91, 10361-10365.
Z. Deng, C. Renault, Chem. Sci. 2021, 12, 12494-12500.
J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, Nature 2018, 556, 355-359.
M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2014, 26, 992-1005.
Y.-Q. Wang, M.-Y. Li, H. Qiu, C. Cao, M.-B. Wang, X.-Y. Wu, J. Huang, Y.-L. Ying, Y.-T. Long, Anal. Chem. 2018, 90, 7790-7794.
X. Shi, R. Gao, Y.-L. Ying, W. Si, Y.-F. Chen, Y.-T. Long, ACS Sens. 2016, 1, 1086-1090.
R. Gao, Y.-L. Ying, Y.-X. Hu, Y.-J. Li, Y.-T. Long, Anal. Chem. 2017, 89, 7382-7387.
Y. Fan, R. Hao, C. Han, B. Zhang, Anal. Chem. 2018, 90, 13837-13841.
K. Hu, Y. Wang, H. Cai, M. V. Mirkin, Y. Gao, G. Friedman, Y. Gogotsi, Anal. Chem. 2014, 86, 8897-8901.
J. Hu, N. Zhang, P.-K. Zhang, Y. Chen, X.-H. Xia, H.-Y. Chen, J.-J. Xu, Angew. Chem. Int. Ed. 2020, 59, 18244-1824;
Angew. Chem. 2020, 132, 18401-18405.

Auteurs

Yu-Ling Wang (YL)

College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, 464000, Xinyang, P. R. China.

Jun-Tao Cao (JT)

College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, 464000, Xinyang, P. R. China.

Yan-Ming Liu (YM)

College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, 464000, Xinyang, P. R. China.

Articles similaires

Humans Electroencephalography Female Male Middle Aged
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Perylene Dopamine Electrochemical Techniques Imides Luminescent Measurements
Peroxynitrous Acid Animals Escherichia coli Immunotherapy Mice

Classifications MeSH