Bipolar Electrochemistry - A Powerful Tool for Micro/Nano-Electrochemistry.
analytical application for single entities
gradient potential distribution
micro/nano-electrochemistry
micro/nanoscale bipolar electrochemistry
wireless nature
Journal
ChemistryOpen
ISSN: 2191-1363
Titre abrégé: ChemistryOpen
Pays: Germany
ID NLM: 101594811
Informations de publication
Date de publication:
12 2022
12 2022
Historique:
revised:
10
09
2022
received:
26
07
2022
pubmed:
14
10
2022
medline:
6
12
2022
entrez:
13
10
2022
Statut:
ppublish
Résumé
The understanding of areas for "classical" electrochemistry (including catalysis, electrolysis and sensing) and bio-electrochemistry at the micro/nanoscale are focus on the continued performance facilitations or the exploration of new features. In the recent 20 years, a different mode for driving electrochemistry has been proposed, which is called as bipolar electrochemistry (BPE). BPE has garnered attention owing to the interesting properties: (i) its wireless nature facilitates electrochemical sensing and high throughput analysis; (ii) the gradient potential distribution on the electrodes surface is a useful tool for preparing gradient surfaces and materials. These permit BPE to be used for modification and analytical applications on a micro/nanoscale surface. This review aims to introduce the principle and classification of BPE and BPE at micro/nanoscale; sort out its applications in electrocatalysis, electrosynthesis, electrophoresis, power supply and so on; explain the confined BPE and summarize its analytical application for single entities (single cells, single particles and single molecules), and discuss finally the important direction of micro/nanoscale BPE.
Identifiants
pubmed: 36229230
doi: 10.1002/open.202200163
pmc: PMC9716041
doi:
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202200163Informations de copyright
© 2022 The Authors. Published by Wiley-VCH GmbH.
Références
R. K. Anand, E. Sheridan, D. Hlushkou, U. Tallarek, R. M. Crooks, Lab Chip 2011, 11, 518-527;
S. E. Fosdick, K. N. Knust, K. Scida, R. M. Crooks, Angew. Chem. Int. Ed. 2013, 52, 2-21.
M. Atobe, Wiley: Hoboken, NJ, 2014; Chapter 1.
R. M. Crooks, ChemElectroChem 2016, 3, 357-359.
J. R. Backhurst, J. M. Coulson, F. Goodridge, R. E. Plimley, M. Fleischmann, J. Electrochem. Soc. 1969, 116, 1600-1607;
M. Fleischmann, J. W. Oldfield, J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, 211-230;
F. Goodridge, C. J. H. King, A. R. Wright, Electrochim. Acta 1977, 22, 347-352.
K. L. Rahn and R. K. Anand, Anal. Chem. 2021, 93, 103-123;
L. Bouffier, D. Zigah, N. Sojic, A. Kuhn, Annu. Rev. Anal. Chem. 2021, 14, 65-86;
N. Shida, Y. Zhou, S. Inagi, Acc. Chem. Res. 2019, 52, 2598-2608;
L. Koefoed, S. U. Pedersen, K. Daasbjerg, Curr. Opin. Electrochem. 2017, 2, 13-17.
M. Z. Bazant, K. T. Chu, B. J. Bayly, SIAM J. Appl. Math. 2005, 65, 1463-1484.
G. M. Whitesides, A. D. Stroock, Phys. Today 2001, 54, 42-48.
S. E. Fosdick, K. N. Knust, K. Scida, R. M. Crooks, Angew. Chem. Int. Ed. 2013, 52, 10438-10456;
Angew. Chem. 2013, 125, 10632-10651;
G. Loget, D. Zigah, L. Bouffier, N. Sojic, A. Kuhn, Acc. Chem. Res. 2013, 46, 2513-2523.
G. Loget, J. Roche, A. Kuhn, Adv. Mater. 2012, 24, 5111-5116;
C. Warakulwit, T. Nguyen, J. Majimel, M.-H. Delville, V. Lapeyre, P. Garrigue, V. Ravaine, J. Limtrakul, A. Kuhn, Nano Lett. 2008, 8, 500-504.
Y.-L. Ying, Y−X. Hu, R. Gao, R. Yu, Z. Gu, L. P. Lee, Y−T. Long, J. Am. Chem. Soc. 2018, 140, 5385-5392;
A. Ismail, S. Voci, P. Pham, L. Leroy, A. Maziz, L. Descamps, A. Kuhn, P. Mailley, T. Livache, A. Buhot, T. Leichlé, A. Bouchet-Spinelli, N. Sojic, Anal. Chem. 2019, 91, 8900-8907;
A. Eden, K. Scida, N. Arroyo-Curras, J. C. T. Eijkel, C. D. Meinhart, S. Pennathur, Electrochim. Acta 2020, 330, 135275;
R. Hao, Y. Fan, B. Zhang, J. Am. Chem. Soc. 2017, 139, 12274-12282.
N. Karimian, P. Hashemi, A. Afkhami, H. Bagheri, Curr. Opin. Electrochem. 2019, 17, 30-37.
J. Duval, J. M. Kleijn, H. P. van Leeuwen, J. Electroanal. Chem. 2001, 505, 1-11;
J. Duval, M. Minor, J. Cecilia, H. P. Van Leeuwen, J. Phys. Chem. B 2003, 107, 4143-4155;
J. F. Duval, J. Buffle, H. P. van Leeuwen, J. Phys. Chem. B 2006, 110, 6081-6094.
S. Cattarin, M. M. Musiani, J. Electrochem. Soc. 1995, 142, 3786-3792.
J. P. Guerrette, S. M. Oja, B. Zhang, Anal. Chem. 2012, 84, 1609-1616.
S. M. Oja, B. Zhang, ChemElectroChem 2016, 3, 457-464;
X.-W. Zheng, Chin. J. Anal. Chem. 2014, 42, 1220-1223;
S. Wu, Z. Zhou, L. Xu, B. Su, Q. Fang, Biosens. Bioelectron. 2014, 53, 148-153.
K. F. Chow, B. Y. Chang, B. A. Zaccheo, F. Mavré, R. M. Crooks, J. Am. Chem. Soc. 2010, 132, 9228-9229.
S. E. Fosdick, R. M. Crooks, J. Am. Chem. Soc. 2012, 134, 863-866.
S. E. Fosdick, S. P. Berglund, C. B. Mullins, R. M. Crooks, ACS Catal. 2014, 4, 1332-1339.
R. Ramakrishnan, C. Shannon, Langmuir 2010, 26, 4602-4606.
G. Loget, G. Larcade, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, M. H. Delville, V. Ravaine, A. Kuhn, Electrochim. Acta 2010, 55, 8116-8120;
G. Loget, V. Lapeyre, P. Garrigue, C. Warakulwit, J. Limtrakul, M. H. Delville, A. Kuhn, Chem. Mater. 2011, 23, 2595-2599.
Y. Koizumi, H. Nishiyama, I. Tomitaa, S. Inagi, Chem. Commun. 2018, 54, 10475-10478.
G. Loget, A. Kuhn, J. Am. Chem. Soc. 2010, 132, 15918-15919.
J. C. Bradley, S. Babu, B. Carroll, A. Mittal, J. Electroanal. Chem. 2002, 522, 75-85.
S. Baek, S. R. Kwon, S. Y. Yeon, S.-H. Yoon, C. M. Kang, S. H. Han, D. Lee, T. D. Chung, Anal. Chem. 2018, 90, 4749-4755.
X. Zhang, L. Zhang, Q. Zhai, W. Gu, J. Li, E. Wang, Anal. Chem. 2016, 88, 2543-2547;
E. Jaworska, A. Michalska, K. Maksymiuk, Electrochim. Acta 2018, 284, 321-327;
I. Dumitrescu, R. K. Anand, S. E. Fosdick, R. M. Crooks, J. Am. Chem. Soc. 2011, 133, 4687-4689.
E. Jaworska, A. Michalska, K. Maksymiuk, Electroanalysis 2020, 32, 812-819;
E. Jaworska, A. Michalska, K. Maksymiuk, Anal. Chem. 2019, 91, 15525-15531.
X. Ma, L. Qi, W. Gao, F. Yuan, Y. Xia, B. Lou, G. Xu, Electrochim. Acta 2019, 308, 20-24.
X. Shi, R. Gao, Y.-L. Ying, W. Si, Y.-F. Chen, Y.-T. Long, ACS Sens. 2016, 1, 1086-1090;
Y.-L. Ying, Y.-X. Hu, R. Gao, R.-J. Yu, Z. Gu, L. P. Lee, Y.-T. Long, J. Am. Chem. Soc. 2018, 140, 5385-5392;
I. Notingher, A. Elfick, J. Phys. Chem. B 2005, 109, 15699-15706;
H. Li, T. Zhang, H. Zhou, Z. Zhang, M. Liu, C. Wang, ChemElectroChem 2021, 8, 1473-1477.
C. Ye, Y. Jiao, D. Chao, T. Ling, J. Shan, B. Zhang, Q. Gu, K. Davey, H. Wang, S.-Z. Qiao, Adv. Mater. 2020, 32, 1907557;
S. Xu, W. Zhang, X. Liu, X. Han, X. Bao, J. Am. Chem. Soc. 2009, 131, 13722-13727.
M. Z. Bazant, K. T. Chu, B. J. Bayly, SIAM J. Appl. Math. 2005, 65, 1463-1484;
K. J. Vetter, E Academic Press, Inc.: New York 1967;
J. S. Newman, Prentice-Hall, Inc.: New Jersey 1973.
A. Eden, K. Scida, N. Arroyo-Currás, J. C. T. Eijkel, C. D. Meinhart, S. Pennathur, J. Phys. Chem. C 2019, 123, 5353-5364.
R. Gao, L. F. Cui, L. Q. Ruan, Y. L. Ying, Y. T. Long, JoVE 2019, 145, e59003.
R. Gao, Y. Lin, Y.-L. Ying, Y.-X. Hu, S.-W. Xu, L.-Q. Ruan, R.-J. Yu, Y.-J. Li, H.-W. Li, L.-F. Cui, Y.-T. Long, Nat. Protoc. 2019, 14, 2015-2035.
M. M. Richter, Chem. Rev. 2004, 104, 3003-3036;
W. Miao, Chem. Rev. 2008, 108, 2506-2553.
A. Arora, J. C. Eijkel, W. E. Morf, A. Manz, Anal. Chem. 2001, 73, 3282-3288.
M.-S. Wu, D.-J. Yuan, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2013, 85, 11960-11965.
M.-S. Wu, B.-Y. Xu, H.-W. Shi, J.-J. Xu, H.-Y. Chen, Lab Chip 2011, 11, 2720-2724.
M.-S. Wu, Z. Liu, J.-J. Xu, H.-Y. Chen, ChemElectroChem 2016, 3, 429-435.
S. G. Ge, J. G. Zhao, S. P. Wang, F. F. Lan, M. Yan, J. H. Yu, Biosens. Bioelectron. 2018, 102, 411-417.
H.-W. Shi, W. Zhao, Z. Liu, X.-C. Liu, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2016, 88, 8795-8801.
J. T. Cao, Y. L. Wang, J. J. Zhang, Y. X. Dong, F. R. Liu, S. W. Ren, Y. M. Liu, Anal. Chem. 2018, 90, 10334-10339.
Y. Wang, R. Jin, N. Sojic, D. Jiang, H.-Y. Chen, Angew. Chem. Int. Ed. 2020, 59, 10416-10420;
Angew. Chem. 2020, 132, 10502-10506.
Y. Wang, D. Jiang, H.-Y. Chen, CCS Chem. 2021, 3, 2268-2274.
R. Gao, Y.-L. Ying, Y.-J. Li, Y.-X. Hu, R.-J. Yu, Y. Lin, Y.-T. Long, Angew. Chem. Int. Ed. 2018, 57, 1011-1015;
Angew. Chem. 2018, 130, 1023-1027.
C. Han, R. Hao, Y. Fan, M. A. Edwards, H. Gao, B. Zhang, Langmuir 2019, 35, 7180-7190.
S.-M. Lu, Y.-J. Li, J.-F. Zhang, Y. Wang, Y.-L. Ying, Y.-T. Long, Anal. Chem. 2019, 91, 10361-10365.
Z. Deng, C. Renault, Chem. Sci. 2021, 12, 12494-12500.
J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, Nature 2018, 556, 355-359.
M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2014, 26, 992-1005.
Y.-Q. Wang, M.-Y. Li, H. Qiu, C. Cao, M.-B. Wang, X.-Y. Wu, J. Huang, Y.-L. Ying, Y.-T. Long, Anal. Chem. 2018, 90, 7790-7794.
X. Shi, R. Gao, Y.-L. Ying, W. Si, Y.-F. Chen, Y.-T. Long, ACS Sens. 2016, 1, 1086-1090.
R. Gao, Y.-L. Ying, Y.-X. Hu, Y.-J. Li, Y.-T. Long, Anal. Chem. 2017, 89, 7382-7387.
Y. Fan, R. Hao, C. Han, B. Zhang, Anal. Chem. 2018, 90, 13837-13841.
K. Hu, Y. Wang, H. Cai, M. V. Mirkin, Y. Gao, G. Friedman, Y. Gogotsi, Anal. Chem. 2014, 86, 8897-8901.
J. Hu, N. Zhang, P.-K. Zhang, Y. Chen, X.-H. Xia, H.-Y. Chen, J.-J. Xu, Angew. Chem. Int. Ed. 2020, 59, 18244-1824;
Angew. Chem. 2020, 132, 18401-18405.