Resolving subcellular pH with a quantitative fluorescent lifetime biosensor.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
12 10 2022
Historique:
received: 23 11 2021
accepted: 13 09 2022
entrez: 12 10 2022
pubmed: 13 10 2022
medline: 15 10 2022
Statut: epublish

Résumé

Changes in sub-cellular pH play a key role in metabolism, membrane transport, and triggering cargo release from therapeutic delivery systems. Most methods to measure pH rely on intensity changes of pH sensitive fluorophores, however, these measurements are hampered by high uncertainty in the inferred pH and the need for multiple fluorophores. To address this, here we combine pH dependant fluorescent lifetime imaging microscopy (pHLIM) with deep learning to accurately quantify sub-cellular pH in individual vesicles. We engineer the pH sensitive protein mApple to localise in the cytosol, endosomes, and lysosomes, and demonstrate that pHLIM can rapidly detect pH changes induced by drugs such as bafilomycin A1 and chloroquine. We also demonstrate that polyethylenimine (a common transfection reagent) does not exhibit a proton sponge effect and had no measurable impact on the pH of endocytic vesicles. pHLIM is a simple and quantitative method that will help to understand drug action and disease progression.

Identifiants

pubmed: 36224168
doi: 10.1038/s41467-022-33348-z
pii: 10.1038/s41467-022-33348-z
pmc: PMC9556823
doi:

Substances chimiques

Protons 0
Chloroquine 886U3H6UFF
Polyethyleneimine 9002-98-6

Banques de données

figshare
['10.6084/m9.figshare.20454867.v1']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6023

Informations de copyright

© 2022. The Author(s).

Références

Ageing Res Rev. 2016 Dec;32:75-88
pubmed: 27197071
Nature. 1998 Jul 9;394(6689):192-5
pubmed: 9671304
Bioconjug Chem. 2011 Jun 15;22(6):1056-65
pubmed: 21539393
J Cell Sci. 2010 Apr 15;123(Pt 8):1183-9
pubmed: 20356929
Cells. 2020 May 04;9(5):
pubmed: 32375321
Nat Rev Mol Cell Biol. 2010 Jan;11(1):50-61
pubmed: 19997129
Nat Commun. 2021 Jun 17;12(1):3721
pubmed: 34140497
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Sep;9(5):
pubmed: 28160452
Nat Commun. 2020 Sep 8;11(1):4482
pubmed: 32901011
Nat Methods. 2008 Jun;5(6):545-51
pubmed: 18454154
Nat Rev Cancer. 2011 Aug 11;11(9):671-7
pubmed: 21833026
Autophagy. 2015;11(8):1437-8
pubmed: 26156798
Chem Rev. 2010 May 12;110(5):2709-28
pubmed: 19831417
Eur J Neurosci. 2013 Jun;37(12):1949-61
pubmed: 23773064
J Am Chem Soc. 2021 Mar 31;143(12):4758-4765
pubmed: 33705125
Eur J Pharm Biopharm. 2018 Aug;129:184-190
pubmed: 29859281
Cell Death Differ. 2004 Sep;11(9):953-61
pubmed: 15195071
J Biol Chem. 2012 Jun 1;287(23):19355-65
pubmed: 22511793
Macromol Biosci. 2017 Apr;17(4):
pubmed: 27786422
Nat Biotechnol. 2013 Jul;31(7):638-46
pubmed: 23792630
Biomaterials. 2013 May;34(14):3647-57
pubmed: 23415642
ACS Appl Mater Interfaces. 2022 Jan 26;14(3):3653-3661
pubmed: 34964593
Anal Bioanal Chem. 2013 May;405(12):3983-7
pubmed: 23475027
ACS Sens. 2019 Apr 26;4(4):883-891
pubmed: 30864782
Sci Rep. 2015 May 18;5:9699
pubmed: 25982672
Biochem Biophys Res Commun. 2005 Jan 28;326(4):799-804
pubmed: 15607740
Macromol Rapid Commun. 2019 May;40(10):e1800917
pubmed: 30835923
PLoS One. 2014 Oct 23;9(10):e110600
pubmed: 25340751
Sci Rep. 2018 Jan 12;8(1):667
pubmed: 29330459
Nat Commun. 2021 Apr 15;12(1):2276
pubmed: 33859193
Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972-6
pubmed: 2973058
Nat Commun. 2015 May 11;6:7007
pubmed: 25959678
Proc Natl Acad Sci U S A. 1983 Apr;80(8):2258-62
pubmed: 6300903
Bioconjug Chem. 2004 Nov-Dec;15(6):1254-63
pubmed: 15546191
Nat Methods. 2017 Jan;14(1):53-56
pubmed: 27869816
Biomaterials. 2012 Mar;33(7):2301-9
pubmed: 22169826
Nat Biotechnol. 2004 Dec;22(12):1567-72
pubmed: 15558047
ACS Nano. 2020 Jul 28;14(7):8012-8023
pubmed: 32568521
Cytometry A. 2014 Aug;85(8):729-37
pubmed: 24953340
Chem Commun (Camb). 2012 May 25;48(42):5127-9
pubmed: 22517076
Nat Biotechnol. 1999 Oct;17(10):969-73
pubmed: 10504696
J Cell Biol. 2014 Nov 10;207(3):419-32
pubmed: 25385186
Annu Rev Physiol. 2012;74:69-86
pubmed: 22335796
Nat Rev Dis Primers. 2018 Oct 1;4(1):27
pubmed: 30275469
Biomacromolecules. 2004 Jan-Feb;5(1):32-9
pubmed: 14715005
ACS Sens. 2021 Jun 25;6(6):2168-2180
pubmed: 34102054
Nucleic Acids Res. 2018 Jan 4;46(D1):D8-D13
pubmed: 29140470

Auteurs

Joshua J Rennick (JJ)

Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Cameron J Nowell (CJ)

Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Colin W Pouton (CW)

Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Angus P R Johnston (APR)

Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia. angus.johnston@monash.edu.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Soil Charcoal Nutrients Manure Nitrogen
Induced Pluripotent Stem Cells Motor Neurons Humans Polyethyleneimine Cell Differentiation
Soil Pollutants Cadmium Arsenic Soil Microbiology Iron

Classifications MeSH