Drought and global hunger: biotechnological interventions in sustainability and management.
Biotechnological interventions
Drought
Economy
Food security
Hunger
Soil fertility
Vegetation
Journal
Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576
Informations de publication
Date de publication:
11 Oct 2022
11 Oct 2022
Historique:
received:
01
08
2022
accepted:
22
09
2022
entrez:
11
10
2022
pubmed:
12
10
2022
medline:
14
10
2022
Statut:
epublish
Résumé
Drought may be efficiently managed using the following strategies: prevention, mitigation, readiness, recovery, and transformation. Biotechnological interventions may become highly important in reducing plants' drought stress in order to address key plant challenges such as population growth and climate change. Drought is a multidimensional construct with several triggering mechanisms or contributing factors working at various spatiotemporal scales, making it one of the known natural catastrophes. Drought is among the causes of hunger and malnutrition, decreasing agricultural output, and poor nutrition. Many deaths caused in children are due to hunger situations, and one in four children face stunted growth. All this hunger and malnutrition may be responsible for the reduction in agricultural productivity caused due to the drought situations affecting food security. Global Hunger Index has been accelerating due to under-nutrition and under-5 deaths. Drought has been covering more than 20% of the world's agricultural areas, leading to significantly less food production than what is required for consumption. Drought reduces soil fertility and adversely affects soil biological activity reducing the inherent capacity of the soil to support vegetation. Recent droughts have had a much greater effect on people's lives, even beyond causing poverty and hunger. Drought may have substantial financial consequences across the globe it may cause a severe impact on the world economy. It is a natural feature of the environment that will appear and disappear as it has in history. Due to increasing temperatures and growing vulnerabilities, it will undoubtedly occur more often and seriously in the coming years. To ensure sustainable socio-economic and social development, it is critical to reducing the effects of potential droughts worldwide using different biotechnological interventions. It's part of a long-term growth plan, and forecasting is essential for early warnings and global hunger management.
Identifiants
pubmed: 36219256
doi: 10.1007/s00425-022-04006-x
pii: 10.1007/s00425-022-04006-x
doi:
Substances chimiques
Soil
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
97Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) American society of plant physiologist’s role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868
pubmed: 9368419
pmcid: 157027
Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00069
doi: 10.3389/fpls.2017.00069
pubmed: 28706531
pmcid: 5489704
Auyeung DSN, Suseela V, Dukes JS (2013) Warming and drought reduce temperature sensitivity of nitrogen transformations. Glob Change Biol 19:662–676. https://doi.org/10.1111/gcb.12063
doi: 10.1111/gcb.12063
Bano A, Ullah F, Nosheen A (2012) Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ 58(4):181–185
doi: 10.17221/210/2011-PSE
Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241. https://doi.org/10.1038/ismej.2013.104
doi: 10.1038/ismej.2013.104
pubmed: 23823489
pmcid: 3806258
Berendse F, de Kroon H, Braakhekke WG (2007) Acquisition, use, and loss of nutrients. In: Pugnaire F, Valladares F (eds) Functional Plant Ecology. CRC Press, Boca Raton, pp 315–345
Boguszewska D, Grudkowska M, Zagdańska B (2010) Drought-responsive antioxidant enzymes in potato (Solanum tuberosum L.). Potato Res 53(4):373–382
doi: 10.1007/s11540-010-9178-6
Bolat I, Dikilitas M, Ercisli S, Ikinci A, Tonkaz T (2014) The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. Sci World J 769732:8
Bota J, Tomas M, Flexas J, Medrano H, Escalona JM (2016) Differences among grapevine cultivars in their stomatal behaviour and water use efficiency under progressive water stress. Agric Water Manag 164:91–99
doi: 10.1016/j.agwat.2015.07.016
Bouskill NJ, Wood TE, Baran R, Ye Z, Bowen BP, Lim H, Zhou J, Nostrand JDV, Nico P, Northen TR, Silver WL, Brodie EL (2016) Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front Microbiol 7:525. https://doi.org/10.3389/fmicb.2016.00525
doi: 10.3389/fmicb.2016.00525
pubmed: 27148214
pmcid: 4837414
Brodribb TJ, McAdam SAM (2013) Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiol 162:1370–1377
pubmed: 23709665
pmcid: 3707560
doi: 10.1104/pp.113.217877
Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105(1–2):1–14
doi: 10.1016/j.fcr.2007.07.004
Chakraborty K, Singh AL, Kalariya KA, Goswami N, Zala PV (2015) Physiological responses of peanut (Arachis hypogaea L.) cultivars to water deficit stress: status of oxidative stress and antioxidant enzyme activities. Acta Bot Croat 74(1):123–142
doi: 10.1515/botcro-2015-0011
Chan Z (2012) Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100(2):110–115
pubmed: 22709556
doi: 10.1016/j.ygeno.2012.06.004
Chevilly S, Dolz-Edo L, López-Nicolás JM, Morcillo L, Vilagrosa A, Yenush L, Mulet JM (2021) Physiological and molecular characterization of the differential response of broccoli (Brassica oleracea var. Italica) cultivars reveals limiting factors for broccoli tolerance to drought stress. J Agric Food Chem 69(35):10394–10404
pubmed: 34445860
pmcid: 8528380
doi: 10.1021/acs.jafc.1c03421
CIA (2017) The world factbook. https://www.cia.gov/library/publications/the-world-factbook/geos/kz.html . Accessed 25 May
Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2(1):45–65
doi: 10.1002/wcc.81
Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3(1):52–58
doi: 10.1038/nclimate1633
De Campos MKF, de Carvalho K, de Souza FS, Marur CJ, Pereira LFP, BespalhokFilho JC, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72(2):242–250
doi: 10.1016/j.envexpbot.2011.03.009
De Ronde J, Cress W, Krüger G, Strasser R, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161(11):1211–1224
pubmed: 15602813
doi: 10.1016/j.jplph.2004.01.014
Deshpande S, Manoharan R, Mitra S (2021) Exogenous β-cyclocitral treatment primes tomato plants against drought by inducing tolerance traits, independent of abscisic acid. Plant Biol 23:170–180
pubmed: 33175459
doi: 10.1111/plb.13210
Díaz SC, Therrell MD, Stahle DW, Cleaveland MK (2002) Chihuahua (Mexico) winter-spring precipitation reconstructed from tree-rings, 1647–1992. Clim Res 22(3):237–244
doi: 10.3354/cr022237
Dobranszki J, Magyar-Tabori K, Takacs-Hudak K (2003) Growth and developmental responses of potato to osmotic stress under in vitro condition. Acta Biol Hung 54(3):365–372
pubmed: 14711040
doi: 10.1556/ABiol.54.2003.3-4.14
dos Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS (2022) Physiological responses to drought, salinity, and heat stress in plants: a review. Stresses 2(1):113–135
doi: 10.3390/stresses2010009
Dubey RS, Pessarakli M (2001) Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: Pessarakli M (ed) Handbook of plant and crop physiology. CRC Press, Boca Raton, pp 605–625
Earl HJ, Davis RF (2003) Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J 95(3):688–696
doi: 10.2134/agronj2003.6880
El Sabagh A, Hossain A, Barutcular C, Gormus O, Ahmad Z, Hussain S et al (2019) Effects of drought stress on the quality of major oilseed crops: Implications and possible mitigation strategies—a review. Appl Ecol Environ Res 17(2):4019–4043
doi: 10.15666/aeer/1702_40194043
EM-DAT (2011) The international disaster database. http://www.emdat.be/old/Documents/Publications/publication_2004_emdat.pdf . Accessed 21 Oct 2017
Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13(1):14–19
pubmed: 18155636
doi: 10.1016/j.tplants.2007.10.005
FAO (2017) How close we are to zero Huhnger. http://www.fao.org/state-of-food-securitynutrition/en/ . Accessed 25 May
FAO (2018) FAO cereal supply and demand brief. World Food Situation. http://www.fao.org/worldfoodsituation/csdb/en/ . Accessed Dec 2019
Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35(2):461–481
doi: 10.1007/s13593-015-0287-0
Fini A, Bellasio C, Pollastri S, Tattini M, Ferrini F (2013) Water relations, growth, and leaf gas exchange as affected by water stress in Jatropha curcas. J Arid Environ 89:21–29
doi: 10.1016/j.jaridenv.2012.10.009
Flexas J, Galmes J, Ribas-Carbo M, Medrano H (2005) The effects of water stress on plant respiration. plant respiration. Springer, Dordrecht, pp 85–94
doi: 10.1007/1-4020-3589-6_6
Ford KL, Cassin A, Bacic A (2011) Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. Front Plant Sci 2:44
pubmed: 22639595
pmcid: 3355674
doi: 10.3389/fpls.2011.00044
Fuchslueger L, Kastl E-M, Bauer F, Kienzl S, Hasibeder R, Ladreiter-Knauss T, Schmitt M, Bahn M, Schloter M, Richter A, Szukics U (2014) Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosci Discuss. https://doi.org/10.5194/bgd-11-9183-2014
Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175(1):81–93
pubmed: 17547669
doi: 10.1111/j.1469-8137.2007.02087.x
García FC, Bestion E, Warfield R, Yvon-Durocher G (2018) Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci 115:10989–10994. https://doi.org/10.1073/pnas.1805518115
doi: 10.1073/pnas.1805518115
pubmed: 30297403
pmcid: 6205462
Garg BK (2003) Nutrient uptake and management under drought: nutrient-moisture interaction. Curr Agric 27:1–8
Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99(25):15898–15903
pubmed: 12456878
pmcid: 138536
doi: 10.1073/pnas.252637799
Ge T-D, Sun N-B, Bai L-P, Tong C-L, Sui F-G (2012) Effects of drought stress on phosphorus and potassium uptake dynamics in summer maize (Zea mays) throughout the growth cycle. Acta Physiol Plant 34:2179–2186. https://doi.org/10.1007/s11738-012-1018-7
doi: 10.1007/s11738-012-1018-7
Ghaffari H, Tadayon MR, Nadeem M, Cheema M, Razmjoo J (2019) Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiol Plant 41(2):1–13
doi: 10.1007/s11738-019-2815-z
Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X (2021) Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Front Plant Sci 11:1965
doi: 10.3389/fpls.2020.600278
Giunta F, Motzo R, Deidda M (1993) Effect of drought on yield and yield components of durum wheat and triticale in a Mediterranean environment. Field Crop Res 33:399–409. https://doi.org/10.1016/0378-4290(93)90161-F
doi: 10.1016/0378-4290(93)90161-F
Gottlieb R, Joshi A (2010) Food justice, vol 304. The MIT Press, Cambridge. https://mitpress.mit.edu/books/food-justice . Accessed 21 Oct 2017
Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2003) Physiological and community responses of established grassland bacterial populations to water stress. Appl Environ Microbiol 69:6961–6968. https://doi.org/10.1128/AEM.69.12.6961-6968.2003
doi: 10.1128/AEM.69.12.6961-6968.2003
pubmed: 14660337
pmcid: 309888
Gupta S, Mishra SK, Misra S, Pandey V, Agrawal L, Nautiyal CS, Chauhan PS (2020) Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiol Biochem 151:88–102
pubmed: 32203884
doi: 10.1016/j.plaphy.2020.03.005
Gutiérrez APA, Engle NL, De Nys E, Molejón C, Martins ES (2014) Drought preparedness in Brazil. Weather Clim Extremes 3:95–106
doi: 10.1016/j.wace.2013.12.001
Hassan N, Ebeed H, Aljaarany A (2020) Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol Mol Biol Plants 26(2):233–245
pubmed: 32158131
pmcid: 7036379
doi: 10.1007/s12298-019-00744-7
Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London
Haworth M, Cosentino SL, Marino G et al (2017) Physiological responses of Arundo donax ecotypes to drought: a common garden study. Glob Chang Biol Bioenergy 9:132–143
doi: 10.1111/gcbb.12348
Hennig A, Kleinschmit JR, Schoneberg S, Loeffler S, Janssen A, Polle A (2015) Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress. Front Plant Sci 6:330
pubmed: 26042130
pmcid: 4436569
doi: 10.3389/fpls.2015.00330
Hochberg U, Degu A, Toubiana D, Gendler T, Nikoloski Z, Rachmilevitch S, Fait A (2013) Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol 13:184
pubmed: 24256338
pmcid: 4225576
doi: 10.1186/1471-2229-13-184
Homyak PM, Allison SD, Huxman TE, Goulden ML, Treseder KK (2017) Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J Geophys Res Biogeosci 122:3260–3272. https://doi.org/10.1002/2017JG004146
doi: 10.1002/2017JG004146
Hu Y, Burucs Z, von Tucher S, Schmidhalter U (2007) Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environ Exp Bot 60:268–275. https://doi.org/10.1016/j.envexpbot.2006.11.003
doi: 10.1016/j.envexpbot.2006.11.003
Huan L, Jin-Qiang W, Qing L (2020) Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress. J Plant Physiol 253:153265
pubmed: 32947245
doi: 10.1016/j.jplph.2020.153265
Hueso S, García C, Hernández T (2012) Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol Biochem 50:167–173. https://doi.org/10.1016/j.soilbio.2012.03.026
doi: 10.1016/j.soilbio.2012.03.026
Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194(3):193–199
doi: 10.1111/j.1439-037X.2008.00305.x
Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00393
doi: 10.3389/fpls.2018.00393
pubmed: 30697219
pmcid: 6113368
Kang C, He S, Zhai H, Li R, Zhao N, Liu Q (2018) A sweetpotatoauxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis. Front Plant Sci 9:1307
pubmed: 30254657
pmcid: 6141746
doi: 10.3389/fpls.2018.01307
Kaya MD, Okçu G, Atak M, Cıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24(4):291–295
doi: 10.1016/j.eja.2005.08.001
Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, Curá JA (2021) Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10(6):1551
pubmed: 34205352
pmcid: 8234610
doi: 10.3390/cells10061551
Kiliç H, Yağbasanlar T (2010) The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. https://doi.org/10.15835/nbha3814274
doi: 10.15835/nbha3814274
Kogan F, Adamenko T, Guo W (2013) Global and regional drought dynamics in the climate warming era. Remote Sens Lett 4(4):364–372
doi: 10.1080/2150704X.2012.736033
Kogan F, Guo W, Yang W (2019) Drought and food security prediction from NOAA new generation of operational satellites. Geomat Nat Haz Risk 10(1):651–666
doi: 10.1080/19475705.2018.1541257
Kogan F, Guo W, Yang W (2020) Near 40-year drought trend during 1981–2019 earth warming and food security. Geomat Nat Haz Risk 11(1):469–490
doi: 10.1080/19475705.2020.1730452
Kremer B (2012) Soil microbiology under drought stress. Acres USA 42:18–21
Kumar S, Sachdeva S, Bhat KV, Vats S (2018) Plant responses to drought stress: physiological, biochemical and molecular basis. Biotic and abiotic stress tolerance in plants. Springer, Singapore, pp 1–25
Laferrière JE (1992) Cultural and environmental response to drought among the Mountain Pima. Ecol Food Nutr 28(1–2):1–9
doi: 10.1080/03670244.1992.9991256
Larcher W (2005) Climatic constraints drive the evolution of low temperature resistance in woody plants. J Agric Meteorol 61(4):189–202
doi: 10.2480/agrmet.61.189
Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, Linden LVD, Maraldo K, Michelsen A, Lehman H (1998) Cynthia Rosenzweig and Daniel Hillel, Climate change and the global harvest: potential impacts of the greenhouse effect on agriculture. J Agric Environ Ethics 11(1):71
doi: 10.1023/A:1007753021788
Lehman H (1998) Cynthia Rosenzweig and Daniel Hillel, Climate change and the global harvest: potential impacts of the greenhouse effect on agriculture. J Agric Environ Ethics 11(1):71
doi: 10.1023/A:1007753021788
Li X, Sarah P (2003) Enzyme activities along a climatic transect in the Judean Desert. CATENA 53:349–363. https://doi.org/10.1016/S0341-8162(03)00087-0
doi: 10.1016/S0341-8162(03)00087-0
Lim CW, Baek W, Han SW, Lee SC (2013) Arabidopsis PYL8 plays an important role for ABA signaling and drought stress responses. Plant Pathol J 29(4):471–476
pubmed: 25288979
pmcid: 4174817
doi: 10.5423/PPJ.NT.07.2013.0071
Lisar SY, Motafakkerazad R, Hossain MM (2012) Water stress in plants: causes, effects and responses. Water stress. In: Mofizur Rahman IM (ed.), Tech. 10, 39363
Liu M, Li M, Liu K, Sui N (2015a) Effects of drought stress on seed germination and seedling growth of different maize varieties. J Agric Sci 7(5):231
Liu X, Zhu X, Pan Y, Zhao A, Li Y (2015b) Spatiotemporal changes of cold surges in Inner Mongolia between 1960 and 2012. J Geog Sci 25(3):259–273
doi: 10.1007/s11442-015-1166-y
Lozano YM, Aguilar-Trigueros CA, Onandia G, Maaß S, Zhao T, Rillig MC (2021) Effects of microplastics and drought on soil ecosystem functions and multifunctionality. J Appl Ecol. https://doi.org/10.1111/1365-2664.13839
doi: 10.1111/1365-2664.13839
Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237. https://doi.org/10.1023/A:1013324727040
doi: 10.1023/A:1013324727040
Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580–585
Maitra P, Zheng Y, Chen L, Wang Y-L, Ji N, Lü P-P, Gan H-Y, Li X-C, Sun X, Zhou X-H, Guo L (2019) Effect of drought and season on arbuscular mycorrhizal fungi in a subtropical secondary forest. Fungal Ecol 41:107–115. https://doi.org/10.1016/j.funeco.2019.04.005
doi: 10.1016/j.funeco.2019.04.005
Mantovani A, Iglesias RR (2010) The effect of water stress on seed germination of three terrestrial bromeliads from restinga. Braz J Bot 33(1):201–205
doi: 10.1590/S0100-84042010000100017
Marschner H (1995) Mineral nutrition of higher plants. Elsevier, New York. https://doi.org/10.1016/B978-0-12-473542-2.X5000-7
doi: 10.1016/B978-0-12-473542-2.X5000-7
Mehari TG, Xu Y, Umer MJ, Shiraku ML, Hou Y, Wang Y et al (2021) Multi-omics-based identification and functional characterization of Gh_A06G1257 proves its potential role in drought stress tolerance in Gossypium hirsutum. Front Plant Sci. https://doi.org/10.3389/fpls.2021.746771
doi: 10.3389/fpls.2021.746771
pubmed: 34992618
pmcid: 8725998
Mera GA (2018) Drought and its impacts in Ethiopia. Weather Clim Extremes 22:24–35
doi: 10.1016/j.wace.2018.10.002
Najafi E, Devineni N, Khanbilvardi RM, Kogan F (2018) Understanding the changes in global crop yields through changes in climate and technology. Earth’s Future 6(3):410–427
doi: 10.1002/2017EF000690
Nakhforoosh A, Bodewein T, Fiorani F, Bodner G (2016) Identification of water use strategies at early growth stages in durum wheat from shoot phenotyping and physiological measurements. Front Plant Sci 7:1155
pubmed: 27547208
pmcid: 4974299
doi: 10.3389/fpls.2016.01155
NDMC (2010) Drought awareness. National Disaster Management Center, South Africa. http://www.ndmc.gov.za/portals/0/docs/publications/Drought_Awareness.pdf
Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23(6):2169–2183
pubmed: 21719693
pmcid: 3160038
doi: 10.1105/tpc.111.087395
NOAA (2016) Global climate report. www.ncdc.noaa.gov/cag/time-series/global . Accessed Sept 2017
NOAA (2017a) Global climate report—November. December. https://www.ncdc.noaa.gov/sotc/global/2017a11
NOAA (2017b) U.S. billion-dollar weather & climate disasters 1980–2016. https://www.ncdc.noaa.gov/billions/ . Accessed 05 June
O’Connell C, Ruan L, Silver W (2018) Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nat Commun 9:1348. https://doi.org/10.1038/s41467-018-03352-3
doi: 10.1038/s41467-018-03352-3
pubmed: 29632326
pmcid: 5890268
Panda RK, Pandit E, Swain A, Mohanty DP, Baig MJ, Kar M, Pradhan SK (2016) Response of physiological and biochemical parameters in deeper rooting rice genotypes under irrigated and water stress conditions. Oryza 53(4):422–427
Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882
pubmed: 21172816
doi: 10.1093/jxb/erq340
Razi K, Muneer S (2021) Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 41(5):669–691
pubmed: 33525946
doi: 10.1080/07388551.2021.1874280
Rojas O (2020) Agricultural extreme drought assessment at global level using the FAO-Agricultural Stress Index System (ASIS). Weather Clim Extremes 27:100184
doi: 10.1016/j.wace.2018.09.001
Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51(342):81–88
pubmed: 10938798
doi: 10.1093/jexbot/51.342.81
Samarah NH, Mullen RE, Cianzio SR, Scott P (2006) Dehydrin-like proteins in soybean seeds in response to drought stress during seed filling. Crop Sci 46(5):2141–2150
doi: 10.2135/cropsci2006.02.0066
Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. Mbio. https://doi.org/10.1128/mBio.00764-17
doi: 10.1128/mBio.00764-17
pubmed: 28720730
pmcid: 5516253
Sapeta H, Costa JM, Lourenco T, Maroco J, Linde PVD, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84
doi: 10.1016/j.envexpbot.2012.08.012
Sardans J, Peñuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem 37:455–461. https://doi.org/10.1016/j.soilbio.2004.08.004
doi: 10.1016/j.soilbio.2004.08.004
Sasson A (2012) Food security for Africa: an urgent global challenge. Agric Food Secur 1(1):1–16
doi: 10.1186/2048-7010-1-2
Schimel JP (2018) Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst 49:409–432. https://doi.org/10.1146/annurev-ecolsys-110617-062614
doi: 10.1146/annurev-ecolsys-110617-062614
Seager R, Lis N, Feldman J, Ting M, Williams AP, Nakamura J et al (2018) Whither the 100th meridian? The once and future physical and human geography of America’s arid–humid divide. Part I: the story so far. Earth Interact 22(5):1–22
Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13(1):61–72
pubmed: 11158529
pmcid: 102214
doi: 10.1105/tpc.13.1.61
Sharma KR, Sharma V (2015) Supplemental irrigation from harvested rainwater to enhance yield and economic returns from wheat in sub-montane region of Jammu, India. J Soil Water Conserv 14:219–226
Sharma V, Mir SH, Arora S (2009) Assessment of fertility status of erosion prone soils of Jammu Siwaliks. J Soil Water Conserv 8:37–41
Sharma V, Hussain S, Sharma KR, Arya VM (2014) Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems. Geoderma 232–234:81–87. https://doi.org/10.1016/j.geoderma.2014.04.039
doi: 10.1016/j.geoderma.2014.04.039
Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115(3):1211–1219
pubmed: 12223867
pmcid: 158586
doi: 10.1104/pp.115.3.1211
Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1998) Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco: high amounts of sorbitol lead to necrotic lesions. Plant Physiol 117(3):831–839
pubmed: 9662525
pmcid: 34937
doi: 10.1104/pp.117.3.831
Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216
pubmed: 27442592
doi: 10.1111/pbi.12603
Siebielec S, Siebielec G, Klimkowicz-Pawlas A, Gałązka A, Grządziel J, Stuczyński T (2020) Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy 10:1429. https://doi.org/10.3390/agronomy10091429
doi: 10.3390/agronomy10091429
Solankey S, Singh R, Baranwal D, Singh D (2015) Genetic expression of tomato for heat and drought stress tolerance: an overview. Int J Veg Sci 21(5):496–515
doi: 10.1080/19315260.2014.902414
Stark JM, Firestone MK (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61:218–221. https://doi.org/10.1128/AEM.61.1.218-221.1995
doi: 10.1128/AEM.61.1.218-221.1995
pubmed: 16534906
pmcid: 1388328
Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203
pubmed: 22365280
doi: 10.1016/j.tplants.2012.01.010
Székely G, Ábrahám E, Cséplo Á, Rigó G, Zsigmond L, Csiszár J (2008) Duplicated P5CS genes of Arabidopsis lay distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28
pubmed: 17971042
doi: 10.1111/j.1365-313X.2007.03318.x
Taiz L, Zeiger E (2006) Fisiologia vegetal, Vol 10. Universitat Jaume I
Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K (2020) Drought stress responses and resistance in plants: FRom cellular responses to long-distance intercellular communication. Front Plant Sci 11:556972
pubmed: 33013974
pmcid: 7511591
doi: 10.3389/fpls.2020.556972
Thomas R, El-Dessougi H, Tubeileh A (2006) Soil system management under arid and semi-arid conditions. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 41–55. https://doi.org/10.1201/9781420017113.ch4
doi: 10.1201/9781420017113.ch4
Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412
pubmed: 16843036
doi: 10.1016/j.tplants.2006.06.003
Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ Sci Pollut Res 25(33):33103–33118
doi: 10.1007/s11356-018-3364-5
Van Loon AF (2015) Hydrological Drought Explained, vol 2. WIREs Water published by Wiley Periodicals Inc, New York
Vanlerberghe GC, Martyn GD, Dahal K (2016) Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress. Physiol Plant 157(3):322–337
pubmed: 27080742
doi: 10.1111/ppl.12451
Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14
pubmed: 14513379
doi: 10.1007/s00425-003-1105-5
Wang G, Zhang X, Li F, Luo Y, Wang W (2010) Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48(1):117–126
doi: 10.1007/s11099-010-0016-5
Wang X, Cai X, Xu C, Wang Q, Dai S (2016) Drought-responsive mechanisms in plant leaves revealed by proteomics. Int J Mol Sci 17(10):1706
pmcid: 5085738
doi: 10.3390/ijms17101706
Wang J, Wang Y, Song X, Wang Y, Lei X, Wang J, Wang Y, Song X, Wang Y, Lei X (2017) Elevated atmospheric CO
doi: 10.1590/18069657rbcs20160460
Warrick RA (1984) The possible impacts on wheat production of a recurrence of the 1930s drought in the US Great Plains. Clim Change 6(1):5–26
doi: 10.1007/BF00141665
Wery J, Silim SN, Knights EJ, Malhotra RS, Cousin R (1994) Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes. Expanding the production and use of cool season food legumes. Springer, Dordrecht, pp 439–456
doi: 10.1007/978-94-011-0798-3_26
Wilczyński G, Kulma A, Szopa J (1998) The expression of 14-3-3 isoforms in potato is developmentally regulated. J Plant Physiol 153(1–2):118–126
doi: 10.1016/S0176-1617(98)80054-0
Xie H, Bai G, Lu P, Li H, Fei M, Xiao BG et al (2022) Exogenous citric acid enhances drought tolerance in tobacco (Nicotiana tabacum). Plant Biol 24(2):333–343
pubmed: 34879179
doi: 10.1111/plb.13371
Xu L, Coleman-Derr D (2019) Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr Opin Microbiol 49:1–6. https://doi.org/10.1016/j.mib.2019.07.003
doi: 10.1016/j.mib.2019.07.003
pubmed: 31454709
Xu B, Long Y, Feng X, Zhu X, Sai N, Chirkova L et al (2021) GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun 12(1):1–13
pubmed: 33397941
pmcid: 7782487
Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56(417):1975–1981
pubmed: 15928013
doi: 10.1093/jxb/eri195
Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S (2021) Response mechanism of plants to drought stress. Horticulturae 2021(7):50
doi: 10.3390/horticulturae7030050
Yao X, Xiong W, Ye T, Wu Y (2012) Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot 63:2579–2593
pubmed: 22268147
pmcid: 3346222
doi: 10.1093/jxb/err433
Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162(3):1378–1391
pubmed: 23735506
pmcid: 3707532
doi: 10.1104/pp.113.217596
Zhang J, Tan W, Yang X-H, Zhang H-X (2008) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27(6):1113–1124
pubmed: 18437388
doi: 10.1007/s00299-008-0549-2
Zhang M, Jin Z-Q, Zhao J, Zhang G, Wu F (2015) Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regul 75:567–574. https://doi.org/10.1007/s10725-014-0022-x
doi: 10.1007/s10725-014-0022-x
Zhang H, Shi L, Lu H, Shao Y, Liu S, Fu S (2020) Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139295
doi: 10.1016/j.scitotenv.2020.139295
pubmed: 33757257
pmcid: 7833254
Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Cui K, Nie L (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78:167–178. https://doi.org/10.1007/s10725-015-0083-5
doi: 10.1007/s10725-015-0083-5
Zhu M, He Y, Zhu M, Ahmad A, Xu S, He Z et al (2022) ipa1 improves rice drought tolerance at seedling stage mainly through activating abscisic acid pathway. Plant Cell Rep 41(1):221–232
pubmed: 34694441
doi: 10.1007/s00299-021-02804-3