The role of excitatory amino acid transporter 2 (EAAT2) in epilepsy and other neurological disorders.
Developmental and epileptic encephalopathy 41
EAAT2
Epilepsy
Genetic
Neurological disorders
SLC1A2
Journal
Metabolic brain disease
ISSN: 1573-7365
Titre abrégé: Metab Brain Dis
Pays: United States
ID NLM: 8610370
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
14
07
2022
accepted:
15
09
2022
pubmed:
30
9
2022
medline:
14
1
2023
entrez:
29
9
2022
Statut:
ppublish
Résumé
Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Excitatory amino acid transporters (EAATs) have important roles in the uptake of glutamate and termination of glutamatergic transmission. Up to now, five EAAT isoforms (EAAT1-5) have been identified in mammals. The main focus of this review is EAAT2. This protein has an important role in the pathoetiology of epilepsy. De novo dominant mutations, as well as inherited recessive mutation in this gene, have been associated with epilepsy. Moreover, dysregulation of this protein is implicated in a range of neurological diseases, namely amyotrophic lateral sclerosis, alzheimer's disease, parkinson's disease, schizophrenia, epilepsy, and autism. In this review, we summarize the role of EAAT2 in epilepsy and other neurological disorders, then provide an overview of the therapeutic modulation of this protein.
Identifiants
pubmed: 36173507
doi: 10.1007/s11011-022-01091-5
pii: 10.1007/s11011-022-01091-5
doi:
Substances chimiques
Excitatory Amino Acid Transporter 2
0
Glutamic Acid
3KX376GY7L
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-16Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Abdul HM, Sama MA, Furman JL et al (2009) Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 29:12957–12969
doi: 10.1523/JNEUROSCI.1064-09.2009
Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554
doi: 10.1523/JNEUROSCI.18-14-05545.1998
Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249
doi: 10.1038/nmeth0410-248
Aguirre G, Rosas S, López-Bayghen E, Ortega A (2008) Valproate-dependent transcriptional regulation of GLAST/EAAT1 expression: involvement of Ying-Yang 1. Neurochem Int 52:1322–1331
doi: 10.1016/j.neuint.2008.01.015
Aida T, Yoshida J, Nomura M et al (2015) Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology 40:1569–1579
doi: 10.1038/npp.2015.26
Alam MA, Datta PK (2019) Epigenetic regulation of excitatory amino acid transporter 2 in neurological disorders. Front Pharmacol 10:1510
doi: 10.3389/fphar.2019.01510
Albrecht J, Zielińska M (2017) Mechanisms of excessive extracellular glutamate accumulation in temporal lobe epilepsy. Neurochem Res 42:1724–1734
doi: 10.1007/s11064-016-2105-8
Allen NM, Conroy J, Shahwan A et al (2016) Unexplained early onset epileptic encephalopathy: exome screening and phenotype expansion. Epilepsia 57:e12–e17
doi: 10.1111/epi.13250
Amalric M (2015) Targeting metabotropic glutamate receptors (mGluRs) in Parkinson's disease. Curr Opin Pharmacol 20:29–34
doi: 10.1016/j.coph.2014.11.001
Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 41:313–318
doi: 10.1016/S0197-0186(02)00018-9
Amato A, Barbour B, Szatkowski M, Attwell D (1994) Counter-transport of potassium by the glutamate uptake carrier in glial cells isolated from the tiger salamander retina. J Physiol 479:371–380
doi: 10.1113/jphysiol.1994.sp020302
Appenzeller S, Balling R, Barisic N et al (2014) De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet 95:360–370
doi: 10.1016/j.ajhg.2014.08.013
Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569
doi: 10.1523/JNEUROSCI.14-09-05559.1994
Barker-Haliski M, White HS (2015) Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harbor Perspect Med 5:a022863
doi: 10.1101/cshperspect.a022863
Bar-Peled O, Ben-Hur H, Biegon A et al (1997) Distribution of glutamate transporter subtypes during human brain development. J Neurochem 69:2571–2580
doi: 10.1046/j.1471-4159.1997.69062571.x
Bauer D, Gupta D, Harotunian V, Meador-Woodruff JH, McCullumsmith RE (2008) Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophr Res 104:108–120
doi: 10.1016/j.schres.2008.06.012
Beart P, O'Shea R (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17
doi: 10.1038/sj.bjp.0706949
Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA, Öngür D, Cohen BM (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 35:2049–2059
doi: 10.1038/npp.2010.74
Bell KF, Bennett DA, Cuello AC (2007) Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci 27:10810–10817
doi: 10.1523/JNEUROSCI.3269-07.2007
Bendotti C, Tortarolo M, Suchak SK et al (2001) Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem 79:737–746
doi: 10.1046/j.1471-4159.2001.00572.x
Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH, Trotti D (2006) Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem 281:14076–14084
doi: 10.1074/jbc.M600653200
Bruijn L, Becher M, Lee M et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338
doi: 10.1016/S0896-6273(00)80272-X
Cavus I, Kasoff WS, Cassaday MP et al (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57:226–235
doi: 10.1002/ana.20380
Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F (2019) Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Expert Opin Ther Targets 23:341–351
doi: 10.1080/14728222.2019.1586885
Chen W, Aoki C, Mahadomrongkul V et al (2002) Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci 22:2142–2152
doi: 10.1523/JNEUROSCI.22-06-02142.2002
Chi B, O’Connell JD, Iocolano AD et al (2018) The neurodegenerative diseases ALS and SMA are linked at the molecular level via the ASC-1 complex. Nucleic Acids Res 46:11939–11951
doi: 10.1093/nar/gky1093
Chu K, Lee S-T, Sinn D-I et al (2007) Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 38:177–182
doi: 10.1161/01.STR.0000252091.36912.65
Chung E, Chen L, Chan Y, Yung K (2008) Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 511:421–437
doi: 10.1002/cne.21852
Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226
doi: 10.1002/glia.22341
Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105
doi: 10.1016/S0301-0082(00)00067-8
Deng H-X, Hentati A, Tainer JA et al (1993) Amyotrophic lateral Ssclerosis and structural defects in cu, Zn superoxide dismutase. Science 261:1047–1051
doi: 10.1126/science.8351519
During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610
doi: 10.1016/0140-6736(93)90754-5
Eid T, Gruenbaum SE, Dhaher R, Lee T-SW, Zhou Y, Danbolt NC (2016) The glutamate–glutamine cycle in epilepsy. The glutamate/GABA-glutamine cycle: 351-400
Epi K, Phenome PE, Allen A et al (2013) De novo mutations in epileptic encephalopathies. Nature 501:217–221
doi: 10.1038/nature12439
Fachim HA, Guizzo R, Cunha AO et al (2020) Ceftriaxone pretreatment confers neuroprotection in rats with acute glaucoma and reduces the score of seizures induced by pentylenotetrazole in mice. J Biochem Mol Toxicol 34:e22578
doi: 10.1002/jbt.22578
Ferrarese C, Tremolizzo L, Rigoldi M et al (2001) Decreased platelet glutamate uptake and genetic risk factors in patients with Parkinson's disease. Neurol Sci 22:65–66
doi: 10.1007/s100720170049
Foran E, Rosenblum L, Bogush A, Pasinelli P, Trotti D (2014) Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia 62:1241–1253
doi: 10.1002/glia.22677
Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T (2008) Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol 578:171–176
doi: 10.1016/j.ejphar.2007.10.023
Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375
doi: 10.1523/JNEUROSCI.17-21-08363.1997
Garcia-Esparcia P, Diaz-Lucena D, Ainciburu M et al (2018) Glutamate transporter GLT1 expression in Alzheimer disease and dementia with Lewy bodies. Front Aging Neurosci 10:122
doi: 10.3389/fnagi.2018.00122
Gardoni F, Di Luca M (2015) Targeting glutamatergic synapses in Parkinson's disease. Curr Opin Pharmacol 20:24–28
doi: 10.1016/j.coph.2014.10.011
Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69:2612–2615
doi: 10.1046/j.1471-4159.1997.69062612.x
Gibb SL, Boston-Howes W, Lavina ZS et al (2007) A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem 282:32480–32490
doi: 10.1074/jbc.M704314200
Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203:1–20
doi: 10.1007/s00232-004-0731-6
Grewer C, Gameiro A, Rauen T (2014) SLC1 glutamate transporters. Pflügers Archiv-Eur J Physiol 466:3–24
doi: 10.1007/s00424-013-1397-7
Guella I, McKenzie MB, Evans DM et al (2017) De novo mutations in YWHAG cause early-onset epilepsy. Am J Hum Genet 101:300–310
doi: 10.1016/j.ajhg.2017.07.004
Guo H, Lai L, Butchbach ME et al (2003) Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet 12:2519–2532
doi: 10.1093/hmg/ddg267
Haglid K, Wang S, Qiner Y, Hamberger A (1994) Excitotoxicity. Mol Neurobiol 9:259–263
doi: 10.1007/BF02816125
Hardies K, Weckhuysen S, De Jonghe P, Suls A (2016) Lessons learned from gene identification studies in Mendelian epilepsy disorders. Eur J Hum Genet 24:961–967
doi: 10.1038/ejhg.2015.251
Harvey BK, Airavaara M, Hinzman J et al (2011) Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS One 6:e22135
doi: 10.1371/journal.pone.0022135
He Y, Casaccia-Bonnefil P (2008) The yin and Yang of YY1 in the nervous system. J Neurochem 106:1493–1502
doi: 10.1111/j.1471-4159.2008.05486.x
Helbig KL, Farwell Hagman KD, Shinde DN et al (2016) Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med 18:898–905
doi: 10.1038/gim.2015.186
Heo S, Jung G, Beuk T, Höger H, Lubec G (2012) Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the multiple T-maze in C57BL/6J mice. Brain Struct Funct 217:363–378
doi: 10.1007/s00429-011-0362-5
Higashimori H, Schin CS, Chiang MSR et al (2016) Selective deletion of astroglial FMRP dysregulates glutamate transporter GLT1 and contributes to fragile X syndrome phenotypes in vivo. J Neurosci 36:7079–7094
doi: 10.1523/JNEUROSCI.1069-16.2016
Holmer H, Keyghobadi M, Moore C, Meshul C (2005) L-dopa-induced reversal in striatal glutamate following partial depletion of nigrostriatal dopamine with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Neuroscience 136:333–341
doi: 10.1016/j.neuroscience.2005.08.003
Hotz AL, Jamali A, Rieser NN et al (2022) Loss of glutamate transporter eaat2a leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia 70:196–214
doi: 10.1002/glia.24106
Howland DS, Liu J, She Y et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci 99:1604–1609
doi: 10.1073/pnas.032539299
Hubbard JA, Szu JI, Yonan JM, Binder DK (2016) Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp Neurol 283:85–96
doi: 10.1016/j.expneurol.2016.05.003
Jacob C, Koutsilieri E, Bartl J et al (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer's disease. J Alzheimers Dis 11:97–116
doi: 10.3233/JAD-2007-11113
Jia M, Njapo SAN, Rastogi V, Hedna VS (2015) Taming glutamate excitotoxicity: strategic pathway modulation for neuroprotection. Cns Drugs 29:153–162
doi: 10.1007/s40263-015-0225-3
Jiménez E, Núñez E, Ibáñez I, Draffin JE, Zafra F, Giménez C (2014) Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3β. Neurochem Int 79:33–43
doi: 10.1016/j.neuint.2014.10.003
Johnson J Jr, Pajarillo E, Karki P et al (2018) Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity. Neurotoxicology 67:112–120
doi: 10.1016/j.neuro.2018.05.001
Kalandadze A, Wu Y, Fournier K, Robinson MB (2004) Identification of motifs involved in endoplasmic reticulum retention–forward trafficking of the GLT-1 subtype of glutamate transporter. J Neurosci 24:5183–5192
doi: 10.1523/JNEUROSCI.0839-04.2004
Karki P, Lee E, Aschner M (2013) Manganese neurotoxicity: a focus on glutamate transporters. Ann Occup Environ Med 25:1–5
doi: 10.1186/2052-4374-25-4
Karki P, Smith K, Johnson J Jr, Aschner M, Lee E (2015) Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem Int 88:53–59
doi: 10.1016/j.neuint.2014.08.002
Karki P, Hong P, Johnson J et al (2018) Arundic acid increases expression and function of astrocytic glutamate transporter EAAT1 via the ERK, Akt, and NF-κB pathways. Mol Neurobiol 55:5031–5046
doi: 10.1007/s12035-017-0709-x
Kaufmann WE, Cortell R, Kau AS et al (2004) Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A 129:225–234
doi: 10.1002/ajmg.a.30229
Kim J-E, Kim D-S, Kwak S-E et al (2007) Anti-glutamatergic effect of riluzole: comparison with valproic acid. Neuroscience 147:136–145
doi: 10.1016/j.neuroscience.2007.04.018
Kim K, Lee SG, Kegelman TP et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484–2493
doi: 10.1002/jcp.22609
Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin C-LG (2012) Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol Dis 47:145–154
doi: 10.1016/j.nbd.2012.03.032
Kong Q, Chang L-C, Takahashi K et al (2014) Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J Clin Invest 124:1255–1267
doi: 10.1172/JCI66163
Kornbuber J, Wiltfang J (1998) The role of glutamate in dementia. Ageing Dement:277–287
Kovermann P, Kolobkova Y, Franzen A, Fahlke C (2022) Mutations associated with epileptic encephalopathy modify EAAT2 anion channel function. Epilepsia 63:388–401
doi: 10.1111/epi.17154
Lauderback CM, Hackett JM, Huang FF et al (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: the role of Aβ1–42. J Neurochem 78:413–416
doi: 10.1046/j.1471-4159.2001.00451.x
Lauriat T, McInnes L (2007) EAAT2 regulation and splicing: relevance to psychiatric and neurological disorders. Mol Psychiatry 12:1065–1078
doi: 10.1038/sj.mp.4002065
Lee S-G, Su Z-Z, Emdad L et al (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123
doi: 10.1074/jbc.M707697200
Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757
doi: 10.1523/JNEUROSCI.18-21-08751.1998
Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56:901–911
doi: 10.1097/00005072-199708000-00008
Li HH, Lin PJ, Wang WH et al (2021) Treatment effects of the combination of ceftriaxone and valproic acid on neuronal and behavioural functions in a rat model of epilepsy. Exp Physiol 106:1814–1828
doi: 10.1113/EP089624
Lin C-LG, Kong Q, Cuny GD, Glicksman MA (2012) Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem 4:1689–1700
doi: 10.4155/fmc.12.122
Löschmann P-A, De Groote C, Smith L et al (2004) Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson's disease. Exp Neurol 187:86–93
doi: 10.1016/j.expneurol.2004.01.018
Maragakis NJ, Dietrich J, Wong V et al (2004) Glutamate transporter expression and function in human glial progenitors. Glia 45:133–143
doi: 10.1002/glia.10310
Masliah E, Hansen L, Alford M, Deteresa R, Mallory M (1996) Deficient glutamate tranport is associated with neurodegeneration in Alzheimer's disease. Ann Neurol 40:759–766
doi: 10.1002/ana.410400512
Mayor D, Tymianski M (2018) Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology 134:178–188
doi: 10.1016/j.neuropharm.2017.11.050
Mei D, Parrini E, Marini C, Guerrini R (2017) The impact of next-generation sequencing on the diagnosis and treatment of epilepsy in paediatric patients. Mol Diagn Ther 21:357–373
doi: 10.1007/s40291-017-0257-0
Meng S, Wang B, Li W (2020) Serum expression of EAAT2 and ADORA2A in patients with different degrees of Alzheimer’s disease. Eur Rev Med Pharmacol Sci 24:11783–11792
Meyer T, Ludolph AC, Morkel M, Hagemeier C, Speer A (1997) Genomic organization of the human excitatory amino acid transporter gene GLT-1. Neuroreport 8:775–777
doi: 10.1097/00001756-199702100-00039
Milton ID, Banner SJ, Ince PG et al (1997) Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Mol Brain Res 52:17–31
doi: 10.1016/S0169-328X(97)00233-7
Mir A, Almudhry M, Alghamdi F et al (2022) SLC gene mutations and pediatric neurological disorders: diverse clinical phenotypes in a Saudi Arabian population. Hum Genet 141:81–99
doi: 10.1007/s00439-021-02404-x
Mironova YS, Zhukova I, Zhukova N, Alifirova V, Izhboldina O, Latypova A (2018) Parkinson's disease and glutamate excitotoxicity. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova 118:50–54
doi: 10.17116/jnevro201811806250
Montanari M, Martella G, Bonsi P, Meringolo M (2022) Autism Spectrum disorder: focus on glutamatergic neurotransmission. Int J Mol Sci 23:3861
doi: 10.3390/ijms23073861
Mookherjee P, Green PS, Watson G et al (2011) GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model. J Alzheimers Dis 26:447–455
doi: 10.3233/JAD-2011-110503
Myers CT, McMahon JM, Schneider AL et al (2016) De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet 99:287–298
doi: 10.1016/j.ajhg.2016.06.003
O’Donovan S, Hasselfeld K, Bauer D et al (2015) Glutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia. Transl Psychiatry 5:e579–e579
doi: 10.1038/tp.2015.74
O’Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3:1–14
doi: 10.1038/s41537-017-0037-1
Ohashi N, Terashima T, Katagi M et al (2021) GLT1 gene delivery based on bone marrow-derived cells ameliorates motor function and survival in a mouse model of ALS. Sci Rep 11:1–17
doi: 10.1038/s41598-021-92285-x
Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007
doi: 10.1001/archpsyc.1995.03950240016004
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E (2019) The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161:107559
doi: 10.1016/j.neuropharm.2019.03.002
Parkin GM, Udawela M, Gibbons A, Dean B (2018) Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 8:51–63
doi: 10.5498/wjp.v8.i2.51
Perkins EM, Clarkson YL, Suminaite D et al (2018) Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Hum Mol Genet 27:2614–2627
doi: 10.1093/hmg/ddy169
Peterson AR, Binder DK (2019) Regulation of synaptosomal GLT-1 and GLAST during epileptogenesis. Neuroscience 411:185–201
doi: 10.1016/j.neuroscience.2019.05.048
Petr GT, Bakradze E, Frederick NM et al (2013) Glutamate transporter expression and function in a striatal neuronal model of Huntington’s disease. Neurochem Int 62:973–981
doi: 10.1016/j.neuint.2013.02.026
Petr GT, Sun Y, Frederick NM et al (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201
doi: 10.1523/JNEUROSCI.4255-14.2015
Pita-Almenar JD, Zou S, Colbert CM, Eskin A (2012) Relationship between increase in astrocytic GLT-1 glutamate transport and late-LTP. Learn Mem 19:615–626
doi: 10.1101/lm.023259.111
Poletti S, Radaelli D, Bosia M et al (2014) Effect of glutamate transporter EAAT2 gene variants and gray matter deficits on working memory in schizophrenia. Eur Psychiatry 29:219–225
doi: 10.1016/j.eurpsy.2013.07.003
Pregnolato S, Chakkarapani E, Isles AR, Luyt K (2019) Glutamate transport and preterm brain injury. Front Physiol 10:417
doi: 10.3389/fphys.2019.00417
Rahman MM, Fatema K (2021) Genetic diagnosis in children with epilepsy and developmental disorders by targeted gene panel analysis in a developing country. J Epilepsy Res 11:22–31
doi: 10.14581/jer.21004
Rao VLR, Dogan A, Bowen KK, Todd KG, Dempsey RJ (2001a) Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic injury to rat brain. Eur J Neurosci 13:119–128
Rao VLR, Dogan A, Todd KG et al (2001b) Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 21:1876–1883
doi: 10.1523/JNEUROSCI.21-06-01876.2001
Ren C, He KJ, Hu H et al (2022) Induction of parkinsonian-like changes via targeted downregulation of astrocytic glutamate transporter GLT-1 in the striatum. J Parkinsons Dis 12:295–314
doi: 10.3233/JPD-212640
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423
doi: 10.1038/gim.2015.30
Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62
doi: 10.1038/362059a0
Rothstein JD, Martin L, Levey AI et al (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725
doi: 10.1016/0896-6273(94)90038-8
Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84
doi: 10.1002/ana.410380114
Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686
doi: 10.1016/S0896-6273(00)80086-0
Rothstein JD, Patel S, Regan MR et al (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77
doi: 10.1038/nature03180
Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521
doi: 10.1111/epi.13709
Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer's disease. Neurobiol Aging 32:553.e551–553.e511
doi: 10.1016/j.neurobiolaging.2010.03.008
Sha L, Wang X, Li J et al (2017) Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med 214:547–563
doi: 10.1084/jem.20160667
Sha L, Chen T, Deng Y et al (2020) Hsp90 inhibitor HSP990 in very low dose upregulates EAAT2 and exerts potent antiepileptic activity. Theranostics 10:8415–8429
doi: 10.7150/thno.44721
Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355
doi: 10.1016/j.neuint.2007.03.012
Sheng L, Stewart T, Yang D et al (2020) Erythrocytic α-synuclein contained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson’s disease pathogenesis. Acta Neuropathol Commun 8:1–22
doi: 10.1186/s40478-020-00983-w
Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 45:250–265
doi: 10.1016/j.brainresrev.2004.04.004
Silvestrin RB, Bambini-Junior V, Galland F et al (2013) Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus. Brain Res 1495:52–60
doi: 10.1016/j.brainres.2012.11.048
Spangaro M, Bosia M, Zanoletti A et al (2012) Cognitive dysfunction and glutamate reuptake: effect of EAAT2 polymorphism in schizophrenia. Neurosci Lett 522:151–155
doi: 10.1016/j.neulet.2012.06.030
Spangaro M, Bosia M, Zanoletti A et al (2014) Exploring effects of EAAT polymorphisms on cognitive functions in schizophrenia. Pharmacogenomics 15:925–932
doi: 10.2217/pgs.14.42
Stergachis AB, Pujol-Giménez J, Gyimesi G et al (2019) Recurrent SLC1A2 variants cause epilepsy via a dominant negative mechanism. Ann Neurol 85:921–926
doi: 10.1002/ana.25477
Sugiyama K, Tanaka K (2018) Spinal cord-specific deletion of the glutamate transporter GLT1 causes motor neuron death in mice. Biochem Biophys Res Commun 497:689–693
doi: 10.1016/j.bbrc.2018.02.132
Sulkowski G, Dąbrowska-Bouta B, Salińska E, Strużyńska L (2014) Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain. PLoS One 9:e113954
doi: 10.1371/journal.pone.0113954
Szatmari P, Paterson A, Zwaigenbaum L et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39:319–328
doi: 10.1038/ng1985
Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613
doi: 10.1093/nar/gky1131
Takahashi K, Foster JB, Lin C-LG (2015a) Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 72:3489–3506
doi: 10.1007/s00018-015-1937-8
Takahashi K, Kong Q, Lin Y et al (2015b) Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J Exp Med 212:319–332
doi: 10.1084/jem.20140413
Tanaka K, Watase K, Manabe T et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702
doi: 10.1126/science.276.5319.1699
Tortarolo M, Crossthwaite AJ, Conforti L et al (2004) Expression of SOD1 G93A or wild-type SOD1 in primary cultures of astrocytes down-regulates the glutamate transporter GLT-1: lack of involvement of oxidative stress. J Neurochem 88:481–493
doi: 10.1046/j.1471-4159.2003.02208.x
Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496
doi: 10.1124/pr.109.002451
Trotti D, Aoki M, Pasinelli P et al (2001) Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J Biol Chem 276:576–582
doi: 10.1074/jbc.M003779200
Tsolaki AC, Gatzima O, Daniilidou M et al (2018) Prevalence of apolipoprotein E polymorphisms in Alzheimer’s disease, mild cognitive impairment, and healthy elderly: a northern Greece study. Neurodegener Dis 18:216–224
doi: 10.1159/000491764
Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657
doi: 10.1152/physrev.00007.2013
Wagner M, Gusic M, Günthner R et al (2018) Biallelic mutations in SLC1A2; an additional mode of inheritance for SLC1A2-related epilepsy. Neuropediatrics 49:059–062
doi: 10.1055/s-0037-1606370
Wang S-J, Wang K-Y, Wang W-C (2004) Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Neuroscience 125:191–201
doi: 10.1016/j.neuroscience.2004.01.019
Wang L, Ma T, Qiao D et al (2022) Polymorphism of rs12294045 in EAAT2 gene is potentially associated with schizophrenia in Chinese Han population. BMC Psychiatry 22:1–9
doi: 10.1186/s12888-022-03799-1
Weller ML, Stone IM, Goss A, Rau T, Rova C, Poulsen DJ (2008) Selective overexpression of excitatory amino acid transporter 2 (EAAT2) in astrocytes enhances neuroprotection from moderate but not severe hypoxia–ischemia. Neuroscience 155:1204–1211
doi: 10.1016/j.neuroscience.2008.05.059
Willard SS, Koochekpour S (2013) Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 9:948–959
doi: 10.7150/ijbs.6426
Woltjer RL, Duerson K, Fullmer JM et al (2010) Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in Alzheimer disease. J Neuropathol Exp Neurol 69:667–676
doi: 10.1097/NEN.0b013e3181e24adb
Xu S, Han J, Morales A, Menzie C, Williams K, Fan Y-S (2008) Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenet Genome Res 122:181–187
doi: 10.1159/000172086
Yamashita A, Makita K, Kuroiwa T, Tanaka K (2006) Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: an in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4. Neurosci Res 55:264–270
doi: 10.1016/j.neures.2006.03.007
Yang Z, Wang J, Yu C et al (2018) Inhibition of p38 MAPK signaling regulates the expression of EAAT2 in the brains of epileptic rats. Front Neurol 9:925
doi: 10.3389/fneur.2018.00925
Young D, Fong DM, Lawlor PA et al (2014) Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Ther 21:1029–1040
doi: 10.1038/gt.2014.82
Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637
doi: 10.1038/383634a0
Zhang Y, He X, Meng X et al (2017) Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson’s disease model. Cell Death Dis 8:e2574–e2574
doi: 10.1038/cddis.2016.454
Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S (2020) Generation of a novel mouse model of Parkinson’s disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem Neurosci 11:406–417
doi: 10.1021/acschemneuro.9b00609