Matched field source localization with Gaussian processes.


Journal

JASA express letters
ISSN: 2691-1191
Titre abrégé: JASA Express Lett
Pays: United States
ID NLM: 101775177

Informations de publication

Date de publication:
Jun 2021
Historique:
entrez: 26 9 2022
pubmed: 1 6 2021
medline: 1 6 2021
Statut: ppublish

Résumé

For a sparsely observed acoustic field, Gaussian processes can predict a densely sampled field on the array. The prediction quality depends on the choice of a kernel and a set of hyperparameters. Gaussian processes are applied to source localization in the ocean in combination with matched-field processing. Compared to conventional processing, the denser sampling of the predicted field across the array reduces the ambiguity function sidelobes. As the noise level increases, the Gaussian process-based processor has a distinctly higher probability of correct localization than conventional processing, due to both denoising and denser field prediction.

Identifiants

pubmed: 36154367
doi: 10.1121/10.0005069
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

064801

Auteurs

Zoi-Heleni Michalopoulou (ZH)

Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.

Peter Gerstoft (P)

University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0238, USA.

Diego Caviedes-Nozal (D)

Acoustic Technology, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800 Denmark michalop@njit.edu, pgerstoft@ucsd.edu, dicano@elektro.dtu.dk.

Classifications MeSH