New PCR primers targeting the cytochrome b gene reveal diversity of Leucocytozoon lineages in an individual host.


Journal

Parasitology research
ISSN: 1432-1955
Titre abrégé: Parasitol Res
Pays: Germany
ID NLM: 8703571

Informations de publication

Date de publication:
Nov 2022
Historique:
received: 16 05 2022
accepted: 09 09 2022
pubmed: 20 9 2022
medline: 15 10 2022
entrez: 19 9 2022
Statut: ppublish

Résumé

Avian haemosporidian parasites have received considerable attention in ecology and evolution as a result of their wide distribution and ease of detection. However, conventional PCR-based detection methods may sometimes underestimate haemosporidian mixed infections, which are frequent in natural populations. This underestimation is due to differences in PCR sensitivity for detection of lineages within the mixed infections. Therefore, we designed new primers to amplify sequences that were not detected by the conventional primers and examined if our primers were useful for accurate detection of mixed infections. Blood samples were collected from 32 wild birds captured in Hokkaido, and 16 of these were positive for Leucocytozoon using the conventional primers, while 15 were positive using our primers. All positively amplified samples were sequenced, and we found that the conventional primers detected 16% (5/32) of multiple infections and none of them was a novel lineage, whereas our primers detected 44% (14/32) of multiple infections and ten of them were novel lineages. A phylogenetic analysis showed that the new primers can detect a wide range of Leucocytozoon lineages compared with that detected by the conventional primers. The results indicate that our primers are particularly suitable for revealing unique strains from multiple infections. Highly variable multiple infections in the same population of birds at the same location were found for the first time. We revealed a higher diversity of Leucocytozoon lineages in nature than expected, which would provide more information to better understand parasite diversity and host-vector interactions in wildlife.

Identifiants

pubmed: 36121563
doi: 10.1007/s00436-022-07667-5
pii: 10.1007/s00436-022-07667-5
doi:

Substances chimiques

DNA Primers 0
Cytochromes b 9035-37-4

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3313-3320

Subventions

Organisme : Cooperative Research Grant of National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine
ID : 2020-joint-18
Organisme : Japan Society for the Promotion of Science
ID : 20K07461

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Alfonso M, de Florentino L, Carlos N, Anders PM (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–545. https://doi.org/10.1007/s00442-004-1757-2
doi: 10.1007/s00442-004-1757-2
Atkinson CT, Forrester DJ, Greiner EC (1988) Pathogenicity of Haemoproteus meleagridis (Haemosporina: Haemoproteidae) in experimentally infected domestic turkeys. J Parasitol 74:228–239
doi: 10.2307/3282448
Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358. https://doi.org/10.1111/j.1755-0998.2009.02692.x
doi: 10.1111/j.1755-0998.2009.02692.x pubmed: 21564906
Bensch S, Stjernman M, Hasselquist D et al (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc B Biol Sci 267:1583–1589. https://doi.org/10.1098/rspb.2000.1181
doi: 10.1098/rspb.2000.1181
Bernotiene R, Palinauskas V, Iezhova T et al (2016) Avian haemosporidian parasites (Haemosporida): a comparative analysis of different polymerase chain reaction assays in detection of mixed infections. Exp Parasitol 163:31–37. https://doi.org/10.1016/j.exppara.2016.01.009
doi: 10.1016/j.exppara.2016.01.009 pubmed: 26821298
Bernotienė R, Žiegytė R, Vaitkutė G, Valkiūnas G (2019) Identification of a new vector species of avian haemoproteids, with a description of methodology for the determination of natural vectors of haemosporidian parasites. Parasit Vectors 12. https://doi.org/10.1186/s13071-019-3559-8
Chakarov N, Kampen H, Wiegmann A et al (2020) Parasites vectors blood parasites in vectors reveal a united blackfly community in the upper canopy. Parasit Vectors 13. https://doi.org/10.1186/s13071-020-04177-0
de Roode JC, Culleton R, Cheesman SJ et al (2004) Host heterogeneity is a determinant of competitive exclusion or coexistence in genetically diverse malaria infections. Proc R Soc Lond B 271:1073–1080. https://doi.org/10.1098/rspb.2004.2695
doi: 10.1098/rspb.2004.2695
Feldman RA, Freed LA, Cann RL (1995) A PCR test for avian malaria in Hawaiian birds. Mol Ecol 4:663–673
doi: 10.1111/j.1365-294X.1995.tb00267.x
Galen SC, Borner J, Williamson JL et al (2020) Metatranscriptomics yields new genomic resources and sensitive detection of infections for diverse blood parasites. Mol Ecol Resour 20:14–28. https://doi.org/10.1111/1755-0998.13091
doi: 10.1111/1755-0998.13091 pubmed: 31507097
Gubler DJ, Reiter P, Ebi LK et al (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109:223–233
pubmed: 11359689 pmcid: 1240669
Harl J, Himmel T, Valkiūnas G, Weissenböck H (2019) The nuclear 18S ribosomal DNAs of avian haemosporidian parasites. Malar J 18:305. https://doi.org/10.1186/s12936-019-2940-6
doi: 10.1186/s12936-019-2940-6 pubmed: 31481072 pmcid: 6724295
Hellgren O, Bensch S, Malmqvist B (2008) Bird hosts, blood parasites and their vectors - associations uncovered by molecular analyses of blackfly blood meals. Mol Ecol 17:1605–1613. https://doi.org/10.1111/j.1365-294X.2007.03680.x
doi: 10.1111/j.1365-294X.2007.03680.x pubmed: 18266623
Hellgren O, Waldenstrom J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802. https://doi.org/10.1645/GE-184R1
doi: 10.1645/GE-184R1 pubmed: 15357072
Imura T, Suzuki Y, Ejiri H et al (2012) Prevalence of avian haematozoa in wild birds in a high-altitude forest in Japan. Vet Parasitol 183:244–248. https://doi.org/10.1016/j.vetpar.2011.07.027
doi: 10.1016/j.vetpar.2011.07.027 pubmed: 21831523
Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
doi: 10.1093/molbev/msy096 pubmed: 29722887 pmcid: 5967553
Malmqvist B, Zhang Y, Adler PH (1999) Diversity, distribution and larval habitats of North Swedish blackflies (Diptera: Simuliidae). Freshw Biol 42:301–314
doi: 10.1046/j.1365-2427.1999.444497.x
Malmqvist B, Strasevicius D, Hellgren O et al (2004) Vertebrate host specificity of wild-caught blackflies revealed by mitochondrial DNA in blood. Proc R Soc Lond B 271:S152–S155. https://doi.org/10.1098/rsbl.2003.0120
doi: 10.1098/rsbl.2003.0120
Murata K, Nii R, Yui S et al (2008) Avian haemosporidian parasites infection in wild birds inhabiting Minami-Daito Island of the northwest Pacific, Japan. J Vet Med Sci 70:501–503
doi: 10.1292/jvms.70.501
Pacheco MA, Cepeda AS, Bernotienė R et al (2018a) Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. Int J Parasitol 48:657–670. https://doi.org/10.1016/j.ijpara.2018.02.003
doi: 10.1016/j.ijpara.2018.02.003 pubmed: 29625126 pmcid: 6004333
Pacheco MA, Matta NE, Valkiünas G et al (2018b) Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Mol Biol Evol 35:383–403. https://doi.org/10.1093/molbev/msx285
doi: 10.1093/molbev/msx285 pubmed: 29126122
Pérez-Tris J, Bensch S (2005) Diagnosing genetically diverse avian malarial infections using mixed-sequence analysis and TA-cloning. Parasitology 131:15–23. https://doi.org/10.1017/S003118200500733X
doi: 10.1017/S003118200500733X pubmed: 16038392
Saiki RK, Gelfand DH, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491. https://doi.org/10.1126/science.2448875
doi: 10.1126/science.2448875 pubmed: 2448875
Schumm YR, Bakaloudis D, Barboutis C et al (2021) Prevalence and genetic diversity of avian haemosporidian parasites in wild bird species of the order Columbiformes. Parasitol Res 120:1405–1420. https://doi.org/10.1007/s00436-021-07053-7/Published
doi: 10.1007/s00436-021-07053-7/Published pubmed: 33521839 pmcid: 7940316
Szöllősi E, Hellgrenn O, Hasselquist D (2008) A cautionary note on the use of nested PCR for parasite screening—an example from avian blood parasites. J Parasitol 94:562–564. https://doi.org/10.1645/GE-1286.1
doi: 10.1645/GE-1286.1
Trifinopoulos J, Nguyen LT, von Haeseler A et al (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. https://doi.org/10.1093/nar/gkw256
doi: 10.1093/nar/gkw256 pubmed: 27084950 pmcid: 4987875
Yeo H, Harjoko DN, Rheindt FE (2022) Double trouble: untangling mixed sequence signals in bird samples with avian haemosporidian co-infections. Parasitology:1–12. https://doi.org/10.1017/S0031182022000245
Yoshimura A, Koketsu M, Bando H et al (2014) Phylogenetic comparison of avian haemosporidian parasites from resident and migratory birds in northern Japan. J Wildl Dis 50:235–242. https://doi.org/10.7589/2013-03-071
doi: 10.7589/2013-03-071 pubmed: 24484482
Zehtindjiev P, Križanauskienè A, Bensch S et al (2012) A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction-based protocols for amplification of the cytochrome B gene. J Parasitol 98:657–665. https://doi.org/10.1645/GE-3006.1
doi: 10.1645/GE-3006.1 pubmed: 22288487

Auteurs

Yui Honjo (Y)

Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.

Shinya Fukumoto (S)

National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan.

Hirokazu Sakamoto (H)

Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Kenji Hikosaka (K)

Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. hikosaka@chiba-u.jp.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH