Influence of rigid lens decentration and rotation on visual image quality in normal and keratoconic eyes.
contact lens alignment
keratoconus
refractive correction
statistical eye model
Journal
Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians (Optometrists)
ISSN: 1475-1313
Titre abrégé: Ophthalmic Physiol Opt
Pays: England
ID NLM: 8208839
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
revised:
05
08
2022
received:
01
06
2022
accepted:
07
08
2022
pubmed:
17
9
2022
medline:
12
10
2022
entrez:
16
9
2022
Statut:
ppublish
Résumé
To investigate whether the movement of a rigid sphero-cylindrical contact lens has a greater impact on the visual image quality in highly aberrated eyes than in normal eyes. For 20 normal and 20 keratoconic SyntEyes, a previously determined best sphero-cylindrical rigid lens was permitted to shift by up to ±1 mm from the line of sight and rotate up to ±15°. Each of the 52,111 lens locations sampled was ray-traced to determine the influence on the wavefront aberration. In turn, the logarithm of visual Strehl ratio (log The variations in image quality within the misalignment space were unique to each eye. A two-letter loss was generally reached with smaller misalignments in keratoconic eyes (10.5 ± 4.7° of rotation or 0.27 ± 0.13 mm of shift) than in normal eyes (13.4 ± 1.8° and 0.39 ± 0.15 mm, respectively) due to larger cylindrical errors. For keratoconic eyes, on average, 14.4 ± 14.9% of misalignment space saw VSX values above the lower normal VSX threshold, well below the values of normal eyes of 48.5 ± 18.5%. In some eyes, a specific combination of lens shift and lens rotation away from the line of sight leads to a simulated improvement in visual image quality. Variations in visual image quality due to the misalignment of rigid sphero-cylindrical contact lens corrections are larger for keratoconic eyes than for normal eyes. In some cases, a specific misalignment may improve visual image quality, which could be considered in the design of the next generation of rigid contact lenses.
Identifiants
pubmed: 36111637
doi: 10.1111/opo.13045
pmc: PMC9547948
mid: NIHMS1830966
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1204-1213Subventions
Organisme : NEI NIH HHS
ID : R01 EY019105
Pays : United States
Organisme : NEI NIH HHS
ID : P30 EY007551
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY008520
Pays : United States
Informations de copyright
© 2022 College of Optometrists.
Références
Perception. 2000;29(9):1041-55
pubmed: 11144818
Optom Vis Sci. 2003 Sep;80(9):637-43
pubmed: 14502044
J Opt Soc Am A Opt Image Sci Vis. 2001 May;18(5):1003-15
pubmed: 11336203
Optometry. 2006 Jul;77(7):343-9
pubmed: 16814238
Ophthalmic Physiol Opt. 2017 May;37(3):358-365
pubmed: 28303580
Vision Res. 2009 Sep;49(19):2393-403
pubmed: 19631683
J Vis. 2004 Apr 23;4(4):329-51
pubmed: 15134480
Optom Vis Sci. 2013 Apr;90(4):314-23
pubmed: 23478630
J Vis. 2004 Apr 23;4(4):322-8
pubmed: 15134479
Cont Lens Anterior Eye. 2020 Dec;43(6):562-567
pubmed: 31836202
J Opt Soc Am A Opt Image Sci Vis. 2018 May 1;35(5):732-739
pubmed: 29726489
CLAO J. 1997 Jan;23(1):69-77
pubmed: 9001776
J Vis. 2021 Sep 1;21(10):18
pubmed: 34554182
Optom Vis Sci. 1998 May;75(5):342-8
pubmed: 9624699
Ophthalmic Physiol Opt. 2020 Sep;40(5):669-679
pubmed: 32770694
Invest Ophthalmol Vis Sci. 2016 Feb;57(2):683-91
pubmed: 26903227
Eur J Appl Physiol. 2003 May;89(3-4):319-25
pubmed: 12736840
Optom Vis Sci. 2019 Apr;96(4):238-247
pubmed: 30943184
Ophthalmic Physiol Opt. 2017 May;37(3):317-325
pubmed: 28370389
Optom Vis Sci. 2020 Jan;97(1):28-35
pubmed: 31895275
Ophthalmic Physiol Opt. 2022 Mar;42(2):358-366
pubmed: 34894167
CLAO J. 1996 Jul;22(3):195-204
pubmed: 8828937
Ophthalmic Physiol Opt. 2012 May;32(3):200-12
pubmed: 22512372
J Cataract Refract Surg. 2011 Oct;37(10):1895-901
pubmed: 21865007
J Opt Soc Am A Opt Image Sci Vis. 2002 Jan;19(1):126-8
pubmed: 11778714
J Cataract Refract Surg. 2009 Aug;35(8):1385-8
pubmed: 19631125
J Vis. 2013 Nov 26;13(13):28
pubmed: 24281244
J Cataract Refract Surg. 2011 Aug;37(8):1523-9
pubmed: 21782097
Am J Optom Physiol Opt. 1982 Oct;59(10):770-3
pubmed: 7148971
J Refract Surg. 2002 Sep-Oct;18(5):S652-60
pubmed: 12361175
Am J Optom Physiol Opt. 1982 Jul;59(7):602-10
pubmed: 7124900
J Cataract Refract Surg. 2002 Feb;28(2):295-301
pubmed: 11821213
J Cataract Refract Surg. 2003 Aug;29(8):1487-95
pubmed: 12954294
J Refract Surg. 2000 Sep-Oct;16(5):S656-8
pubmed: 11019894
Ophthalmic Physiol Opt. 2018 Nov;38(6):609-616
pubmed: 30450747