Reconstitution of microtubule into GTP-responsive nanocapsules.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 09 2022
Historique:
received: 08 01 2022
accepted: 05 09 2022
entrez: 15 9 2022
pubmed: 16 9 2022
medline: 20 9 2022
Statut: epublish

Résumé

Nanocapsules that collapse in response to guanosine triphosphate (GTP) have the potential as drug carriers for efficiently curing diseases caused by cancer and RNA viruses because GTP is present at high levels in such diseased cells and tissues. However, known GTP-responsive carriers also respond to adenosine triphosphate (ATP), which is abundant in normal cells as well. Here, we report the elaborate reconstitution of microtubule into a nanocapsule that selectively responds to GTP. When the tubulin monomer from microtubule is incubated at 37 °C with a mixture of GTP (17 mol%) and nonhydrolysable GTP* (83 mol%), a tubulin nanosheet forms. Upon addition of photoreactive molecular glue to the resulting dispersion, the nanosheet is transformed into a nanocapsule. Cell death results when a doxorubicin-containing nanocapsule, after photochemically crosslinked for properly stabilizing its shell, is taken up into cancer cells that overexpress GTP.

Identifiants

pubmed: 36109556
doi: 10.1038/s41467-022-33156-5
pii: 10.1038/s41467-022-33156-5
pmc: PMC9477877
doi:

Substances chimiques

Nanocapsules 0
Tubulin 0
Doxorubicin 80168379AG
Guanosine Triphosphate 86-01-1
Adenosine Triphosphate 8L70Q75FXE

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5424

Informations de copyright

© 2022. The Author(s).

Références

J Virol. 2007 Nov;81(22):12272-84
pubmed: 17804496
Biochem J. 1996 Feb 1;313 ( Pt 3):803-8
pubmed: 8611158
J Bacteriol. 2002 Jul;184(14):3923-30
pubmed: 12081964
Nat Chem. 2013 Jul;5(7):613-20
pubmed: 23787753
ACS Nano. 2015 Sep 22;9(9):9078-86
pubmed: 26266334
ChemMedChem. 2014 Dec;9(12):2623-31
pubmed: 25209748
Nature. 1984 Nov 15-21;312(5991):237-42
pubmed: 6504138
Chem Soc Rev. 2016 Mar 7;45(5):1457-501
pubmed: 26776487
Nat Rev Microbiol. 2021 Mar;19(3):141-154
pubmed: 33024307
Nanoscale. 2011 Apr;3(4):1316-44
pubmed: 21321754
J Bioenerg Biomembr. 2000 Jun;32(3):269-75
pubmed: 11768310
Nature. 2000 Sep 21;407(6802):340-8
pubmed: 11014183
J Antimicrob Chemother. 2009 Oct;64(4):741-6
pubmed: 19643775
Methods Enzymol. 1991;196:478-85
pubmed: 2034137
Angew Chem Int Ed Engl. 2021 Feb 8;60(6):2740-2756
pubmed: 32519456
ACS Nano. 2014 Jan 28;8(1):904-14
pubmed: 24351029
J Pharm Pharmacol. 2013 Feb;65(2):157-70
pubmed: 23278683
Nature. 2006 May 25;441(7092):424-30
pubmed: 16724053
Biochemistry. 1996 Sep 17;35(37):12038-45
pubmed: 8810908
Nature. 2010 Jan 21;463(7279):339-43
pubmed: 20090750
Cancer Res. 2012 Jan 1;72(1):304-14
pubmed: 22084398
J Am Chem Soc. 2014 Jan 15;136(2):810-9
pubmed: 24354635
Cancer Res. 1996 Mar 15;56(6):1194-8
pubmed: 8640796
Adv Mater. 2020 Oct;32(42):e2002629
pubmed: 32881127
Nature. 2016 May 02;533(7603):369-73
pubmed: 27135928
J Gen Virol. 2004 May;85(Pt 5):1077-1093
pubmed: 15105525
Cell Biochem Biophys. 2014 Sep;70(1):27-32
pubmed: 24643502
Cell. 2015 Jan 15;160(1-2):219-27
pubmed: 25594181
Nat Rev Microbiol. 2011 Oct 17;9(12):860-75
pubmed: 22002165
Nature. 2013 Dec 5;504(7478):101-6
pubmed: 24256733
Cell. 2010 May 28;141(5):799-811
pubmed: 20510927
Science. 2015 Jun 19;348(6241):1365-8
pubmed: 26089516
Angew Chem Int Ed Engl. 2012 Oct 22;51(43):10751-5
pubmed: 22907668
Cell Cycle. 2005 Sep;4(9):1157-60
pubmed: 16123589
Chem Soc Rev. 2017 Oct 30;46(21):6480-6491
pubmed: 29034942
Nature. 2005 May 26;435(7041):523-7
pubmed: 15917813
J Biol Chem. 2000 Sep 29;275(39):30046-9
pubmed: 10866996
Physiol Rev. 2013 Jan;93(1):269-309
pubmed: 23303910
Chem Soc Rev. 2018 Jul 30;47(15):5554-5573
pubmed: 29856446
Nature. 2004 Nov 18;432(7015):294-7
pubmed: 15549090
J Am Chem Soc. 2013 Mar 27;135(12):4684-7
pubmed: 23477460
Life Sci. 1992;50(5):327-34
pubmed: 1732704
Cell. 2015 Aug 13;162(4):849-59
pubmed: 26234155
J Cell Biol. 2012 Aug 6;198(3):315-22
pubmed: 22851320
Science. 1997 Oct 31;278(5339):856-60
pubmed: 9346483
J Am Chem Soc. 2014 Dec 17;136(50):17459-67
pubmed: 25405895
Annu Rev Cell Dev Biol. 1997;13:83-117
pubmed: 9442869
Nature. 1995 Jul 20;376(6537):271-4
pubmed: 7617040
Biochim Biophys Acta. 2007 Apr;1768(4):794-807
pubmed: 17188232
Chem Rev. 2017 Oct 11;117(19):12133-12164
pubmed: 28898067
Nature. 2006 Aug 10;442(7103):709-12
pubmed: 16799566

Auteurs

Noriyuki Uchida (N)

RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.

Ai Kohata (A)

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Kou Okuro (K)

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

Annalisa Cardellini (A)

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

Chiara Lionello (C)

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

Eric A Zizzi (EA)

PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

Marco A Deriu (MA)

PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

Giovanni M Pavan (GM)

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962, Lugano-Viganello, Switzerland.

Michio Tomishige (M)

Department of Physical Sciences, Aoyama Gakuin University, Kanagawa, 252-5258, Japan.

Takaaki Hikima (T)

RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan.

Takuzo Aida (T)

RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. aida@macro.t.u-tokyo.ac.jp.
Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. aida@macro.t.u-tokyo.ac.jp.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria

Elucidating ATP's role as solubilizer of biomolecular aggregate.

Susmita Sarkar, Saurabh Gupta, Chiranjit Mahato et al.
1.00
Adenosine Triphosphate Protein Aggregates Solubility Humans Protein Conformation

Regulation of minimal spindle midzone organization by mitotic kinases.

Wei Ming Lim, Wei-Xiang Chew, Arianna Esposito Verza et al.
1.00
Spindle Apparatus Phosphorylation Humans CDC2 Protein Kinase Protein Serine-Threonine Kinases
Humans Extracellular Vesicles Oxidative Stress Cell Line, Tumor Adenosine Triphosphate

Classifications MeSH