Nuclear Receptors in Energy Metabolism.


Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2022
Historique:
entrez: 15 9 2022
pubmed: 16 9 2022
medline: 20 9 2022
Statut: ppublish

Résumé

Nuclear receptors are master regulators of energy metabolism through the conversion of extracellular signals into gene expression signatures. The function of the respective nuclear receptor is tissue specific, signal and co-factor dependent. While normal nuclear receptor function is central to metabolic physiology, aberrant nuclear receptor signaling is linked to various metabolic diseases such as type 2 diabetes mellitus, obesity, or hepatic steatosis. Thus, the tissue specific manipulation of nuclear receptors is a major field in biomedical research and represents a treatment approach for metabolic syndrome. This chapter focuses on key nuclear receptors involved in regulating the metabolic function of liver, adipose tissue, skeletal muscle, and pancreatic β-cells. It also addresses the importance of nuclear co-factors for fine-tuning of nuclear receptor function. The mode of action, role in energy metabolism, and therapeutic potential of prominent nuclear receptors is outlined.

Identifiants

pubmed: 36107313
doi: 10.1007/978-3-031-11836-4_4
doi:

Substances chimiques

Receptors, Cytoplasmic and Nuclear 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

61-82

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, Umesono K, Evans RM (1994) Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 91:7355–7359. https://doi.org/10.1073/pnas.91.15.7355
doi: 10.1073/pnas.91.15.7355 pubmed: 8041794 pmcid: 44398
Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366. https://doi.org/10.1210/endo.137.1.8536636
doi: 10.1210/endo.137.1.8536636 pubmed: 8536636
Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202
doi: 10.1210/endo.142.10.8458
Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650. https://doi.org/10.1038/347645a0
doi: 10.1038/347645a0 pubmed: 2129546
Francque S, an Verrijken SC, Prawitt J, Paumelle R, Derudas B, Lefebvre P, Taskinen M-R, van Hul W, Mertens I, Hubens G, van Marck E, Michielsen P, van Gaal L, Staels B (2015) PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol 63:164–173. https://doi.org/10.1016/j.jhep.2015.02.019
doi: 10.1016/j.jhep.2015.02.019 pubmed: 25703085
Montagner A, Polizzi A, Fouché E, Ducheix S, Lippi Y, Lasserre F, Barquissau V, Régnier M, Lukowicz C, Benhamed F, Iroz A, Bertrand-Michel J, Al Saati T, Cano P, Mselli-Lakhal L, Mithieux G, Rajas F, Lagarrigue S, Pineau T, Loiseau N, Postic C, Langin D, Wahli W, Guillou H (2016) Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65:1202–1214. https://doi.org/10.1136/gutjnl-2015-310798
doi: 10.1136/gutjnl-2015-310798 pubmed: 26838599
Panadero M, Herrera E, Bocos C (2005) Different sensitivity of PPARalpha gene expression to nutritional changes in liver of suckling and adult rats. Life Sci 76:1061–1072. https://doi.org/10.1016/j.lfs.2004.10.018
doi: 10.1016/j.lfs.2004.10.018 pubmed: 15607334
Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103:1489–1498. https://doi.org/10.1172/JCI6223
doi: 10.1172/JCI6223 pubmed: 10359558 pmcid: 408372
Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N (1998) Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem 273:16710–16714. https://doi.org/10.1074/jbc.273.27.16710
doi: 10.1074/jbc.273.27.16710 pubmed: 9642225
Gulick T, Cresci S, Caira T, Moore DD, Kelly DP (1994) The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci U S A 91:11012–11016. https://doi.org/10.1073/pnas.91.23.11012
doi: 10.1073/pnas.91.23.11012 pubmed: 7971999 pmcid: 45156
Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A 96:7473–7478. https://doi.org/10.1073/pnas.96.13.7473
doi: 10.1073/pnas.96.13.7473 pubmed: 10377439 pmcid: 22110
Lundåsen T, Mary CH, Lisa-Mari N, Sabyasachi S, Bo A, Stefan EA, Mats R (2007) PPARα is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 360:437–440. https://doi.org/10.1016/j.bbrc.2007.06.068
doi: 10.1016/j.bbrc.2007.06.068 pubmed: 17601491
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li D-S, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635. https://doi.org/10.1172/JCI23606
doi: 10.1172/JCI23606 pubmed: 15902306 pmcid: 1088017
Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027. https://doi.org/10.1210/en.2008-0816
doi: 10.1210/en.2008-0816 pubmed: 18687777
Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, Kharitonenkov A, Wasserman DH (2009) Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 150:4084–4093. https://doi.org/10.1210/en.2009-0221
doi: 10.1210/en.2009-0221 pubmed: 19470704 pmcid: 2736088
Kharitonenkov A, Wroblewski VJ, Koester A, Chen Y-F, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774–781
doi: 10.1210/en.2006-1168
Tanaka N, Takahashi S, Zhang Y, Krausz KW, Smith PB, Patterson AD, Gonzalez FJ (2015) Role of fibroblast growth factor 21 in the early stage of NASH induced by methionine- and choline-deficient diet. Biochim Biophys Acta (BBA) – Mol Basis Dis 1852:1242–1252. https://doi.org/10.1016/j.bbadis.2015.02.012
doi: 10.1016/j.bbadis.2015.02.012
Fisher FM, Chui PC, Nasser IA, Popov Y, Cunniff JC, Lundasen T, Kharitonenkov A, Schuppan D, Flier JS, Maratos-Flier E (2014) Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 147:1073–83.e6. https://doi.org/10.1053/j.gastro.2014.07.044
doi: 10.1053/j.gastro.2014.07.044 pubmed: 25083607
Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li Y-S, Lindberg RA, Chen J-L, Jung DY, Zhang Z, Ko H-J, Kim JK, Véniant MM (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259. https://doi.org/10.2337/db08-0392
doi: 10.2337/db08-0392 pubmed: 18840786 pmcid: 2606881
Sanyal A, Charles ED, Neuschwander-Tetri BA, Loomba R, Harrison SA, Abdelmalek MF, Lawitz EJ, Halegoua-DeMarzio D, Kundu S, Noviello S, Luo Y, Christian R (2019) Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 392:2705–2717. https://doi.org/10.1016/S0140-6736(18)31785-9
doi: 10.1016/S0140-6736(18)31785-9 pubmed: 30554783
Charles ED, Neuschwander-Tetri BA, Pablo Frias J, Kundu S, Luo Y, Tirucherai GS, Christian R (2019) Pegbelfermin (BMS-986036), PEGylated FGF21, in patients with obesity and type 2 diabetes: results from a randomized phase 2 study. Obesity (Silver Spring) 27:41–49. https://doi.org/10.1002/oby.22344
doi: 10.1002/oby.22344
Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, Goetz R, Mohammadi M, Gerard RD, Dechow PC, Mangelsdorf DJ, Kliewer SA, Wan Y (2012) Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci U S A 109:3143–3148. https://doi.org/10.1073/pnas.1200797109
doi: 10.1073/pnas.1200797109 pubmed: 22315431 pmcid: 3286969
Thompson KE, Guillot M, Graziano MJ, Mangipudy RS, Chadwick KD (2021) Pegbelfermin, a PEGylated FGF21 analogue, has pharmacology without bone toxicity after 1-year dosing in skeletally-mature monkeys. Toxicol Appl Pharmacol 428:115673. https://doi.org/10.1016/j.taap.2021.115673
doi: 10.1016/j.taap.2021.115673 pubmed: 34364948
Kim AM, Somayaji VR, Dong JQ, Rolph TP, Weng Y, Chabot JR, Gropp KE, Talukdar S, Calle RA (2017) Once-weekly administration of a long-acting fibroblast growth factor 21 analogue modulates lipids, bone turnover markers, blood pressure and body weight differently in obese people with hypertriglyceridaemia and in non-human primates. Diabetes Obes Metab 19:1762–1772. https://doi.org/10.1111/dom.13023
doi: 10.1111/dom.13023 pubmed: 28573777
Stanislaus S, Hecht R, Yie J, Hager T, Hall M, Spahr C, Wang W, Weiszmann J, Li Y, Deng L, Winters D, Smith S, Zhou L, Li Y, Véniant MM, Xu J (2017) A novel Fc-FGF21 with improved resistance to proteolysis, increased affinity toward β-Klotho, and enhanced efficacy in mice and cynomolgus monkeys. Endocrinology 158:1314–1327. https://doi.org/10.1210/en.2016-1917
doi: 10.1210/en.2016-1917 pubmed: 28324011
Kaufman A, Abuqayyas L, Denney WS, Tillman EJ, Rolph T (2020) AKR-001, an Fc-FGF21 analog, showed sustained pharmacodynamic effects on insulin sensitivity and lipid metabolism in type 2 diabetes patients. Cell Rep Med 1:100057. https://doi.org/10.1016/j.xcrm.2020.100057
doi: 10.1016/j.xcrm.2020.100057 pubmed: 33205064 pmcid: 7659583
Harrison SA, Ruane PJ, Freilich BL, Neff G, Patil R, Behling CA, Hu C, Fong E, de Temple B, Tillman EJ, Rolph TP, Cheng A, Yale K (2021) Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nat Med 27:1262–1271. https://doi.org/10.1038/s41591-021-01425-3
doi: 10.1038/s41591-021-01425-3 pubmed: 34239138
Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93:693–704. https://doi.org/10.1016/s0092-8674(00)81432-4
doi: 10.1016/s0092-8674(00)81432-4 pubmed: 9630215
Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 14:2819–2830. https://doi.org/10.1101/gad.844900
doi: 10.1101/gad.844900 pubmed: 11090130 pmcid: 317055
Commerford SR, Vargas L, Dorfman SE, Mitro N, Rocheford EC, Mak PA, Li X, Kennedy P, Mullarkey TL, Saez E (2007) Dissection of the insulin-sensitizing effect of liver X receptor ligands. Mol Endocrinol 21:3002–3012. https://doi.org/10.1210/me.2007-0156
doi: 10.1210/me.2007-0156 pubmed: 17717069
Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev 9:1033–1045. https://doi.org/10.1101/gad.9.9.1033
doi: 10.1101/gad.9.9.1033 pubmed: 7744246
Teboul M, Enmark E, Li Q, Wikström AC, Pelto-Huikko M, Gustafsson JA (1995) OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc Natl Acad Sci U S A 92:2096–2100. https://doi.org/10.1073/pnas.92.6.2096
doi: 10.1073/pnas.92.6.2096 pubmed: 7892230 pmcid: 42430
Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383:728–731. https://doi.org/10.1038/383728a0
doi: 10.1038/383728a0 pubmed: 8878485
Chiang JY, Kimmel R, Weinberger C, Stroup D (2000) Farnesoid X receptor responds to bile acids and represses cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Biol Chem 275:10918–10924. https://doi.org/10.1074/jbc.275.15.10918
doi: 10.1074/jbc.275.15.10918 pubmed: 10753890
Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225. https://doi.org/10.1016/j.cmet.2005.09.001
doi: 10.1016/j.cmet.2005.09.001 pubmed: 16213224
Guo GL, Lambert G, Negishi M, Ward JM, Brewer HB, Kliewer SA, Gonzalez FJ, Sinal CJ (2003) Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J Biol Chem 278:45062–45071
doi: 10.1074/jbc.M307145200
Huang L, Zhao A, Lew J-L, Zhang T, Hrywna Y, Thompson JR, de Pedro N, Royo I, Blevins RA, Peláez F, Wright SD, Cui J (2003) Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J Biol Chem 278:51085–51090. https://doi.org/10.1074/jbc.M308321200
doi: 10.1074/jbc.M308321200 pubmed: 14527955
Plass JRM, Mol O, Heegsma J, Geuken M, Faber KN, Jansen PLM, Müller M (2002) Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 35:589–596. https://doi.org/10.1053/jhep.2002.31724
doi: 10.1053/jhep.2002.31724 pubmed: 11870371
Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ (2001) Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276:28857–28865. https://doi.org/10.1074/jbc.M011610200
doi: 10.1074/jbc.M011610200 pubmed: 11387316
Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ (2002) Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 277:18793–18800. https://doi.org/10.1074/jbc.M109927200
doi: 10.1074/jbc.M109927200 pubmed: 11901146
Alberti S, Steffensen KR, Gustafsson JA (2000) Structural characterisation of the mouse nuclear oxysterol receptor genes LXRalpha and LXRbeta. Gene 243:93–103. https://doi.org/10.1016/s0378-1119(99)00555-7
doi: 10.1016/s0378-1119(99)00555-7 pubmed: 10675617
Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U, Rudling M, Angelin B, Björkhem I, Pettersson S, Gustafsson JA (2001) Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest 107:565–573. https://doi.org/10.1172/JCI9794
doi: 10.1172/JCI9794 pubmed: 11238557 pmcid: 199420
Korach-André M, Archer A, Barros RP, Parini P, Gustafsson J-Å (2011) Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity. Proc Natl Acad Sci U S A 108:403–408
doi: 10.1073/pnas.1017884108
Ogihara T, Chuang J-C, Vestermark GL, Garmey JC, Ketchum RJ, Huang X, Brayman KL, Thorner MO, Repa JJ, Mirmira RG, Evans-Molina C (2010) Liver X receptor agonists augment human islet function through activation of anaplerotic pathways and glycerolipid/free fatty acid cycling. J Biol Chem 285:5392–5404. https://doi.org/10.1074/jbc.M109.064659
doi: 10.1074/jbc.M109.064659 pubmed: 20007976
Laffitte BA, Chao LC, Li J, Walczak R, Hummasti S, Joseph SB, Castrillo A, Wilpitz DC, Mangelsdorf DJ, Collins JL, Saez E, Tontonoz P (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci U S A 100:5419–5424. https://doi.org/10.1073/pnas.0830671100
doi: 10.1073/pnas.0830671100 pubmed: 12697904 pmcid: 154360
Baranowski M, Zabielski P, Błachnio-Zabielska AU, Harasim E, Chabowski A, Górski J (2014) Insulin-sensitizing effect of LXR agonist T0901317 in high-fat fed rats is associateddoi: with restored muscle GLUT4 expression and insulin-stimulated AS160 phosphorylation. Cell Physiol Biochem 33:1047–1057. https://doi.org/10.1159/000358675
doi: 10.1159/000358675 pubmed: 24732673
Cao G, Liang Y, Broderick CL, Oldham BA, Beyer TP, Schmidt RJ, Zhang Y, Stayrook KR, Suen C, Otto KA, Miller AR, Dai J, Foxworthy P, Gao H, Ryan TP, Jiang X-C, Burris TP, Eacho PI, Etgen GJ (2003) Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 278:1131–1136. https://doi.org/10.1074/jbc.M210208200
doi: 10.1074/jbc.M210208200 pubmed: 12414791
Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103:1006–1011. https://doi.org/10.1073/pnas.0506982103
doi: 10.1073/pnas.0506982103 pubmed: 16410358 pmcid: 1347977
Renga B, Mencarelli A, D’Amore C, Cipriani S, Baldelli F, Zampella A, Distrutti E, Fiorucci S (2012) Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition. FASEB J 26:3021–3031. https://doi.org/10.1096/fj.11-195701
doi: 10.1096/fj.11-195701 pubmed: 22447981
Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, Caron S, Torpier G, Fruchart J-C, Gonzalez FJ, Kuipers F, Staels B (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 281:11039–11049. https://doi.org/10.1074/jbc.M510258200
doi: 10.1074/jbc.M510258200 pubmed: 16446356
Goodwin B, Watson MA, Kim H, Miao J, Kemper JK, Kliewer SA (2003) Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor-alpha. Mol Endocrinol 17:386–394. https://doi.org/10.1210/me.2002-0246
doi: 10.1210/me.2002-0246 pubmed: 12554795
Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B (2000) Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838. https://doi.org/10.1101/gad.850400
doi: 10.1101/gad.850400 pubmed: 11090131 pmcid: 317060
Chen Z, Chen H, Zhang Z, Ding P, Yan X, Li Y, Zhang S, Gu Q, Zhou H, Xu J (2020) Discovery of novel liver X receptor inverse agonists as lipogenesis inhibitors. Eur J Med Chem 206:112793. https://doi.org/10.1016/j.ejmech.2020.112793
doi: 10.1016/j.ejmech.2020.112793 pubmed: 32961480
Huang P, Kaluba B, Jiang X, Chang S, Tang X, Mao L, Zhang Z, Huang F, Zhai L (2018) Liver X receptor inverse agonist SR9243 suppresses nonalcoholic steatohepatitis intrahepatic inflammation and fibrosis. Biomed Res Int 2018:8071093. https://doi.org/10.1155/2018/8071093
doi: 10.1155/2018/8071093 pubmed: 29670908 pmcid: 5835296
Griffett K, Welch RD, Flaveny CA, Kolar GR, Neuschwander-Tetri BA, Burris TP (2015) The LXR inverse agonist SR9238 suppresses fibrosis in a model of non-alcoholic steatohepatitis. Mol Metab 4:353–357. https://doi.org/10.1016/j.molmet.2015.01.009
doi: 10.1016/j.molmet.2015.01.009 pubmed: 25830098 pmcid: 4354919
Griffett K, Solt LA, El-Gendy BE-DM, Kamenecka TM, Burris TP (2013) A liver-selective LXR inverse agonist that suppresses hepatic steatosis. ACS Chem Biol 8:559–567. https://doi.org/10.1021/cb300541g
doi: 10.1021/cb300541g pubmed: 23237488
Goto T, Itoh M, Suganami T, Kanai S, Shirakawa I, Sakai T, Asakawa M, Yoneyama T, Kai T, Ogawa Y (2018) Obeticholic acid protects against hepatocyte death and liver fibrosis in a murine model of nonalcoholic steatohepatitis. Sci Rep 8:8157. https://doi.org/10.1038/s41598-018-26383-8
doi: 10.1038/s41598-018-26383-8 pubmed: 29802399 pmcid: 5970222
Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, Kowdley KV, McCullough A, Terrault N, Clark JM, Tonascia J, Brunt EM, Kleiner DE, Doo E (2015) Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385:956–965. https://doi.org/10.1016/S0140-6736(14)61933-4
doi: 10.1016/S0140-6736(14)61933-4 pubmed: 25468160
Patel K, Harrison SA, Elkhashab M, Trotter JF, Herring R, Rojter SE, Kayali Z, Wong VW-S, Greenbloom S, Jayakumar S, Shiffman ML, Freilich B, Lawitz EJ, Gane EJ, Harting E, Xu J, Billin AN, Chung C, Djedjos CS, Subramanian GM, Myers RP, Middleton MS, Rinella M, Noureddin M (2020) Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial. Hepatology 72:58–71. https://doi.org/10.1002/hep.31205
doi: 10.1002/hep.31205 pubmed: 32115759
Ratziu V, Sanyal AJ, Loomba R, Rinella M, Harrison S, Anstee QM, Goodman Z, Bedossa P, MacConell L, Shringarpure R, Shah A, Younossi Z (2019) REGENERATE: design of a pivotal, randomised, phase 3 study evaluating the safety and efficacy of obeticholic acid in patients with fibrosis due to nonalcoholic steatohepatitis. Contemp Clin Trials 84:105803. https://doi.org/10.1016/j.cct.2019.06.017
doi: 10.1016/j.cct.2019.06.017 pubmed: 31260793
Schwabl P, Hambruch E, Budas GR, Supper P, Burnet M, Liles JT, Birkel M, Brusilovskaya K, Königshofer P, Peck-Radosavljevic M, Watkins WJ, Trauner M, Breckenridge DG, Kremoser C, Reiberger T (2021) The non-steroidal FXR agonist cilofexor improves portal hypertension and reduces hepatic fibrosis in a rat NASH model. Biomedicine 9. https://doi.org/10.3390/biomedicines9010060
Phuc Le P, Friedman JR, Schug J, Brestelli JE, Parker JB, Bochkis IM, Kaestner KH (2005) Glucocorticoid receptor-dependent gene regulatory networks. PLoS Genet 1:e16. https://doi.org/10.1371/journal.pgen.0010016
doi: 10.1371/journal.pgen.0010016 pubmed: 16110340 pmcid: 1186734
Opherk C, Tronche F, Kellendonk C, Kohlmüller D, Schulze A, Schmid W, Schütz G (2004) Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol Endocrinol 18:1346–1353. https://doi.org/10.1210/me.2003-0283
doi: 10.1210/me.2003-0283 pubmed: 15031319
Liang Y, Osborne MC, Monia BP, Bhanot S, Watts LM, She P, DeCarlo SO, Chen X, Demarest K (2005) Antisense oligonucleotides targeted against glucocorticoid receptor reduce hepatic glucose production and ameliorate hyperglycemia in diabetic mice. Metabolism 54:848–855. https://doi.org/10.1016/j.metabol.2005.01.030
doi: 10.1016/j.metabol.2005.01.030 pubmed: 15988691
Watts LM, Manchem VP, Leedom TA, Rivard AL, McKay RA, Bao D, Neroladakis T, Monia BP, Bodenmiller DM, Cao JX-C, Zhang HY, Cox AL, Jacobs SJ, Michael MD, Sloop KW, Bhanot S (2005) Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism. Diabetes 54:1846–1853. https://doi.org/10.2337/diabetes.54.6.1846
doi: 10.2337/diabetes.54.6.1846 pubmed: 15919808
Cole TG, Wilcox HG, Heimberg M (1982) Effects of adrenalectomy and dexamethasone on hepatic lipid metabolism. J Lipid Res 23:81–91. https://doi.org/10.1016/S0022-2275(20)38176-1
doi: 10.1016/S0022-2275(20)38176-1 pubmed: 7057114
Lemke U, Krones-Herzig A, Diaz MB, Narvekar P, Ziegler A, Vegiopoulos A, Cato AC, Bohl S, Klingmüller U, Screaton RA, Müller-Decker K, Kersten S, Herzig S (2008) The glucocorticoid receptor controls hepatic dyslipidemia through Hes1. Cell Metab 8:212–223. https://doi.org/10.1016/j.cmet.2008.08.001
doi: 10.1016/j.cmet.2008.08.001 pubmed: 18762022
Rose AJ, Díaz MB, Reimann A, Klement J, Walcher T, Krones-Herzig A, Strobel O, Werner J, Peters A, Kleyman A, Tuckermann JP, Vegiopoulos A, Herzig S (2011) Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor. Cell Metab 14:123–130. https://doi.org/10.1016/j.cmet.2011.04.010
doi: 10.1016/j.cmet.2011.04.010 pubmed: 21723510
de Guia RM, Rose AJ, Sommerfeld A, Seibert O, Strzoda D, Zota A, Feuchter Y, Krones-Herzig A, Sijmonsma T, Kirilov M, Sticht C, Gretz N, Dallinga-Thie G, Diederichs S, Klöting N, Blüher M, Berriel Diaz M, Herzig S (2015) microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. EMBO J 34:344–360. https://doi.org/10.15252/embj.201490464
doi: 10.15252/embj.201490464 pubmed: 25510864
Glantschnig C, Koenen M, Gil-Lozano M, Karbiener M, Pickrahn I, Williams-Dautovich J, Patel R, Cummins CL, Giroud M, Hartleben G, Vogl E, Blüher M, Tuckermann J, Uhlenhaut H, Herzig S, Scheideler M (2019) A miR-29a-driven negative feedback loop regulates peripheral glucocorticoid receptor signaling. FASEB J 33:5924–5941. https://doi.org/10.1096/fj.201801385RR
doi: 10.1096/fj.201801385RR pubmed: 30742779
Hemmer MC, Wierer M, Schachtrup K, Downes M, Hübner N, Evans RM, Uhlenhaut NH (2019) E47 modulates hepatic glucocorticoid action. Nat Commun 10:306. https://doi.org/10.1038/s41467-018-08196-5
doi: 10.1038/s41467-018-08196-5 pubmed: 30659202 pmcid: 6338785
Jones CL, Bhatla T, Blum R, Wang J, Paugh SW, Wen X, Bourgeois W, Bitterman DS, Raetz EA, Morrison DJ, Teachey DT, Evans WE, Garabedian MJ, Carroll WL (2014) Loss of TBL1XR1 disrupts glucocorticoid receptor recruitment to chromatin and results in glucocorticoid resistance in a B-lymphoblastic leukemia model. J Biol Chem 289:20502–20515. https://doi.org/10.1074/jbc.M114.569889
doi: 10.1074/jbc.M114.569889 pubmed: 24895125 pmcid: 4110265
Greulich F, Wierer M, Mechtidou A, Gonzalez-Garcia O, Uhlenhaut NH (2021) The glucocorticoid receptor recruits the COMPASS complex to regulate inflammatory transcription at macrophage enhancers. Cell Rep 34:108742. https://doi.org/10.1016/j.celrep.2021.108742
doi: 10.1016/j.celrep.2021.108742 pubmed: 33567280 pmcid: 7873837
Schäcke H, Döcke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23–43. https://doi.org/10.1016/s0163-7258(02)00297-8
doi: 10.1016/s0163-7258(02)00297-8 pubmed: 12441176
Hinds TD Jr, Ramakrishnan S, Cash HA, Stechschulte LA, Heinrich G, Najjar SM, Sanchez ER (2010) Discovery of glucocorticoid receptor-beta in mice with a role in metabolism. Mol Endocrinol 24:1715–1727. https://doi.org/10.1210/me.2009-0411
doi: 10.1210/me.2009-0411 pubmed: 20660300 pmcid: 2940475
Oakley RH, Webster JC, Sar M, Parker CR Jr, Cidlowski JA (1997) Expression and subcellular distribution of the beta-isoform of the human glucocorticoid receptor. Endocrinology 138:5028–5038. https://doi.org/10.1210/endo.138.11.5501
doi: 10.1210/endo.138.11.5501 pubmed: 9348235
Bamberger CM, Bamberger AM, de Castro M, Chrousos GP (1995) Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 95:2435–2441. https://doi.org/10.1172/JCI117943
doi: 10.1172/JCI117943 pubmed: 7769088 pmcid: 295915
Chatzopoulou A, Roy U, Meijer AH, Alia A, Spaink HP, Schaaf MJM (2015) Transcriptional and metabolic effects of glucocorticoid receptor α and β signaling in zebrafish. Endocrinology 156:1757–1769. https://doi.org/10.1210/en.2014-1941
doi: 10.1210/en.2014-1941 pubmed: 25756310
Oakley RH, Jewell CM, Yudt MR, Bofetiado DM, Cidlowski JA (1999) The dominant negative activity of the human glucocorticoid receptor β isoform: specificity and mechanisms of action*. J Biol Chem 274:27857–27866. https://doi.org/10.1074/jbc.274.39.27857
doi: 10.1074/jbc.274.39.27857 pubmed: 10488132
Marino JS, Stechschulte LA, Stec DE, Nestor-Kalinoski A, Coleman S, Hinds TD Jr (2016) Glucocorticoid receptor β induces hepatic steatosis by augmenting inflammation and inhibition of the peroxisome proliferator-activated receptor (PPAR) α. J Biol Chem 291:25776–25788. https://doi.org/10.1074/jbc.M116.752311
doi: 10.1074/jbc.M116.752311 pubmed: 27784782 pmcid: 5203696
Xu C, He J, Jiang H, Zu L, Zhai W, Pu S, Xu G (2009) Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol 23:1161–1170. https://doi.org/10.1210/me.2008-0464
doi: 10.1210/me.2008-0464 pubmed: 19443609 pmcid: 5419195
Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798–800. https://doi.org/10.1210/endo.135.2.8033830
doi: 10.1210/endo.135.2.8033830 pubmed: 8033830
Tontonoz P, Graves RA, Budavari AI, Erdjument-Bromage H, Lui M, Hu E, Tempst P, Spiegelman BM (1994) Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res 22:5628–5634. https://doi.org/10.1093/nar/22.25.5628
doi: 10.1093/nar/22.25.5628 pubmed: 7838715 pmcid: 310126
Frohnert BI, Hui TY, Bernlohr DA (1999) Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem 274:3970–3977. https://doi.org/10.1074/jbc.274.7.3970
doi: 10.1074/jbc.274.7.3970 pubmed: 9933587
Jeninga EH, Bugge A, Nielsen R, Kersten S, Hamers N, Dani C, Wabitsch M, Berger R, Stunnenberg HG, Mandrup S, Kalkhoven E (2009) Peroxisome proliferator-activated receptor gamma regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81). J Biol Chem 284:26385–26393. https://doi.org/10.1074/jbc.M109.040741
doi: 10.1074/jbc.M109.040741 pubmed: 19633298 pmcid: 2785326
Tontonoz P, Hu E, Devine J, Beale EG, Spiegelman BM (1995) PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 15:351–357. https://doi.org/10.1128/MCB.15.1.351
doi: 10.1128/MCB.15.1.351 pubmed: 7799943 pmcid: 231968
Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15:5336–5348
doi: 10.1002/j.1460-2075.1996.tb00918.x
Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4:611–617. https://doi.org/10.1016/S1097-2765(00)80211-7
doi: 10.1016/S1097-2765(00)80211-7 pubmed: 10549292
Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VKK, O’Rahilly S (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 52:910–917. https://doi.org/10.2337/diabetes.52.4.910
doi: 10.2337/diabetes.52.4.910 pubmed: 12663460
He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, Evans RM (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100:15712–15717. https://doi.org/10.1073/pnas.2536828100
doi: 10.1073/pnas.2536828100 pubmed: 14660788 pmcid: 307633
Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, Shimomura I (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52:1655–1663. https://doi.org/10.2337/diabetes.52.7.1655
doi: 10.2337/diabetes.52.7.1655 pubmed: 12829629
Tomaru T, Steger DJ, Lefterova MI, Schupp M, Lazar MA (2009) Adipocyte-specific expression of murine resistin is mediated by synergism between peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding proteins. J Biol Chem 284:6116–6125. https://doi.org/10.1074/jbc.M808407200
doi: 10.1074/jbc.M808407200 pubmed: 19126543 pmcid: 2649096
Sugii S, Olson P, Sears DD, Saberi M, Atkins AR, Barish GD, Hong S-H, Castro GL, Yin Y-Q, Nelson MC, Hsiao G, Greaves DR, Downes M, Yu RT, Olefsky JM, Evans RM (2009) PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci U S A 106:22504–22509. https://doi.org/10.1073/pnas.0912487106
doi: 10.1073/pnas.0912487106 pubmed: 20018750 pmcid: 2794650
Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C, Kelman JA (2010) Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 304:411–418. https://doi.org/10.1001/jama.2010.920
doi: 10.1001/jama.2010.920 pubmed: 20584880
Floyd JS, Barbehenn E, Lurie P, Wolfe SM (2009) Case series of liver failure associated with rosiglitazone and pioglitazone. Pharmacoepidemiol Drug Saf 18:1238–1243. https://doi.org/10.1002/pds.1804
doi: 10.1002/pds.1804 pubmed: 19623674
Fukui Y, Masui S, Osada S, Umesono K, Motojima K (2000) A new thiazolidinedione, NC-2100, which is a weak PPAR-gamma activator, exhibits potent antidiabetic effects and induces uncoupling protein 1 in white adipose tissue of KKAy obese mice. Diabetes 49:759–767. https://doi.org/10.2337/diabetes.49.5.759
doi: 10.2337/diabetes.49.5.759 pubmed: 10905484
Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164. https://doi.org/10.1074/jbc.M109.053942
doi: 10.1074/jbc.M109.053942 pubmed: 20028987
Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15:395–404. https://doi.org/10.1016/j.cmet.2012.01.019
doi: 10.1016/j.cmet.2012.01.019 pubmed: 22405074 pmcid: 3410936
Jeremic N, Chaturvedi P, Tyagi SC (2017) Browning of white fat: novel insight into factors, mechanisms, and therapeutics. J Cell Physiol 232:61–68. https://doi.org/10.1002/jcp.25450
doi: 10.1002/jcp.25450 pubmed: 27279601
Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, Findeisen H, Bruemmer D, Drucker DJ, Chaudhary N, Holland J, Hembree J, Abplanalp W, Grant E, Ruehl J, Wilson H, Kirchner H, Lockie SH, Hofmann S, Woods SC, Nogueiras R, Pfluger PT, Perez-Tilve D, DiMarchi R, Tschöp MH (2009) A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5:749–757. https://doi.org/10.1038/nchembio.209
doi: 10.1038/nchembio.209 pubmed: 19597507
Kroon T, Harms M, Maurer S, Bonnet L, Alexandersson I, Lindblom A, Ahnmark A, Nilsson D, Gennemark P, O’Mahony G, Osinski V, McNamara C, Boucher J (2020) PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Mol Metab 36:100964. https://doi.org/10.1016/j.molmet.2020.02.007
doi: 10.1016/j.molmet.2020.02.007 pubmed: 32248079 pmcid: 7132097
Jones JR, Barrick C, Kim K-A, Lindner J, Blondeau B, Fujimoto Y, Shiota M, Kesterson RA, Kahn BB, Magnuson MA (2005) Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci U S A 102:6207–6212. https://doi.org/10.1073/pnas.0306743102
doi: 10.1073/pnas.0306743102 pubmed: 15833818 pmcid: 556131
Festuccia WT, Blanchard P-G, Richard D, Deshaies Y (2010) Basal adrenergic tone is required for maximal stimulation of rat brown adipose tissue UCP1 expression by chronic PPAR-gamma activation. Am J Phys Regul Integr Comp Phys 299:R159–R167. https://doi.org/10.1152/ajpregu.00821.2009
doi: 10.1152/ajpregu.00821.2009
Lasar D, Rosenwald M, Kiehlmann E, Balaz M, Tall B, Opitz L, Lidell ME, Zamboni N, Krznar P, Sun W, Varga L, Stefanicka P, Ukropec J, Nuutila P, Virtanen K, Amri E-Z, Enerbäck S, Wahli W, Wolfrum C (2018) Peroxisome proliferator activated receptor gamma controls mature brown adipocyte inducibility through glycerol kinase. Cell Rep 22:760–773. https://doi.org/10.1016/j.celrep.2017.12.067
doi: 10.1016/j.celrep.2017.12.067 pubmed: 29346772
Imai T, Takakuwa R, Marchand S, Dentz E, Bornert J-M, Messaddeq N, Wendling O, Mark M, Desvergne B, Wahli W, Chambon P, Metzger D (2004) Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci U S A 101:4543–4547. https://doi.org/10.1073/pnas.0400356101
doi: 10.1073/pnas.0400356101 pubmed: 15070754 pmcid: 384783
Tai T-AC, Jennermann C, Brown KK, Oliver BB, MacGinnitie MA, Wilkison WO, Brown HR, Lehmann JM, Kliewer SA, Morris DC, Graves RA (1996) Activation of the nuclear receptor peroxisome proliferator-activated receptor γ promotes brown adipocyte differentiation*. J Biol Chem 271:29909–29914. https://doi.org/10.1074/jbc.271.47.29909
doi: 10.1074/jbc.271.47.29909 pubmed: 8939934
Xiong W, Zhao X, Villacorta L, Rom O, Garcia-Barrio MT, Guo Y, Fan Y, Zhu T, Zhang J, Zeng R, Chen YE, Jiang Z, Chang L (2018) Brown adipocyte-specific PPARγ (peroxisome proliferator-activated receptor γ) deletion impairs perivascular adipose tissue development and enhances atherosclerosis in mice. Arterioscler Thromb Vasc Biol 38:1738–1747. https://doi.org/10.1161/ATVBAHA.118.311367
doi: 10.1161/ATVBAHA.118.311367 pubmed: 29954752 pmcid: 6202167
Hondares E, Mora O, Yubero P, de la Concepción R, Marisa R, Iglesias M, Giralt FV (2006) Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology 147:2829–2838. https://doi.org/10.1210/en.2006-0070
doi: 10.1210/en.2006-0070 pubmed: 16513826
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839. https://doi.org/10.1016/S0092-8674(00)81410-5
doi: 10.1016/S0092-8674(00)81410-5 pubmed: 9529258
Lin J, Wu P-H, Tarr PT, Lindenberg KS, St-Pierre J, Zhang C-Y, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119:121–135. https://doi.org/10.1016/j.cell.2004.09.013
doi: 10.1016/j.cell.2004.09.013 pubmed: 15454086
Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisawa M, Kodama T, Sakai J (2003) Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A 100:15924–15929. https://doi.org/10.1073/pnas.0306981100
doi: 10.1073/pnas.0306981100 pubmed: 14676330 pmcid: 307669
Nahlé Z, Hsieh M, Pietka T, Coburn CT, Grimaldi PA, Zhang MQ, Das D, Abumrad NA (2008) CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR delta/beta-mediated adaptation to metabolic stress. J Biol Chem 283:14317–14326. https://doi.org/10.1074/jbc.M706478200
doi: 10.1074/jbc.M706478200 pubmed: 18308721 pmcid: 2386936
Angione AR, Jiang C, Pan D, Wang Y-X, Kuang S (2011) PPARδ regulates satellite cell proliferation and skeletal muscle regeneration. Skelet Muscle 1:33. https://doi.org/10.1186/2044-5040-1-33
doi: 10.1186/2044-5040-1-33 pubmed: 22040534 pmcid: 3223495
Chen W, Gao R, Xie X, Zheng Z, Li H, Li S, Dong F, Wang L (2015) A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice. Sci Rep 5:9884. https://doi.org/10.1038/srep09884
doi: 10.1038/srep09884 pubmed: 25943561 pmcid: 4421799
Schuler M, Ali F, Chambon C, Duteil D, Bornert J-M, Tardivel A, Desvergne B, Wahli W, Chambon P, Metzger D (2006) PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 4:407–414. https://doi.org/10.1016/j.cmet.2006.10.003
doi: 10.1016/j.cmet.2006.10.003 pubmed: 17084713
Wang Y-X, Zhang C-L, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2:e294. https://doi.org/10.1371/journal.pbio.0020294
doi: 10.1371/journal.pbio.0020294 pubmed: 15328533 pmcid: 509410
Lunde IG, Ekmark M, Rana ZA, Buonanno A, Gundersen K (2007) PPARdelta expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer. J Physiol 582:1277–1287. https://doi.org/10.1113/jphysiol.2007.133025
doi: 10.1113/jphysiol.2007.133025 pubmed: 17463039 pmcid: 2075258
Krämer DK, Ahlsén M, Norrbom J, Jansson E, Hjeltnes N, Gustafsson T, Krook A (2006) Human skeletal muscle fibre type variations correlate with PPAR alpha, PPAR delta and PGC-1 alpha mRNA. Acta Physiol 188:207–216. https://doi.org/10.1111/j.1748-1716.2006.01620.x
doi: 10.1111/j.1748-1716.2006.01620.x
Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M, Grimaldi PA (2003) Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J 17:2299–2301. https://doi.org/10.1096/fj.03-0269fje
doi: 10.1096/fj.03-0269fje pubmed: 14525942
Chandrashekar P, Manickam R, Ge X, Bonala S, McFarlane C, Sharma M, Wahli W, Kambadur R (2015) Inactivation of PPARβ/δ adversely affects satellite cells and reduces postnatal myogenesis. Am J Physiol Endocrinol Metab 309:E122–E131. https://doi.org/10.1152/ajpendo.00586.2014
doi: 10.1152/ajpendo.00586.2014 pubmed: 25921579
McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90. https://doi.org/10.1038/387083a0
doi: 10.1038/387083a0 pubmed: 9139826
Wang Y-X, Lee C-H, Tiep S, Yu RT, Ham J, Kang H, Evans RM (2003) Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113:159–170. https://doi.org/10.1016/S0092-8674(03)00269-1
doi: 10.1016/S0092-8674(03)00269-1 pubmed: 12705865
Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797–801. https://doi.org/10.1038/nature00904
doi: 10.1038/nature00904 pubmed: 12181572
Pettersen IKN, Tusubira D, Ashrafi H, Dyrstad SE, Hansen L, Liu X-Z, Nilsson LIH, Løvsletten NG, Berge K, Wergedahl H, Bjørndal B, Fluge Ø, Bruland O, Rustan AC, Halberg N, Røsland GV, Berge RK, Tronstad KJ (2019) Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion 49:97–110. https://doi.org/10.1016/j.mito.2019.07.009
doi: 10.1016/j.mito.2019.07.009 pubmed: 31351920
Glinghammar B, Skogsberg J, Hamsten A, Ehrenborg E (2003) PPARδ activation induces COX-2 gene expression and cell proliferation in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 308:361–368. https://doi.org/10.1016/S0006-291X(03)01384-6
doi: 10.1016/S0006-291X(03)01384-6 pubmed: 12901877
Kostadinova R, Montagner A, Gouranton E, Fleury S, Guillou H, Dombrowicz D, Desreumaux P, Wahli W (2012) GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell Biosci 2:34. https://doi.org/10.1186/2045-3701-2-34
doi: 10.1186/2045-3701-2-34 pubmed: 23046570 pmcid: 3519722
Da’adoosh B, Marcus D, Rayan A, King F, Che J, Goldblum A (2019) Discovering highly selective and diverse PPAR-delta agonists by ligand based machine learning and structural modeling. Sci Rep 9:1106. https://doi.org/10.1038/s41598-019-38508-8
doi: 10.1038/s41598-019-38508-8 pubmed: 30705343 pmcid: 6355875
Susini S, Roche E, Prentki M, Schlegel W (1998) Glucose and glucoincretin peptides synergize to induce c-fos, c-jun, junB, zif-268, and nur-77 gene expression in pancreatic β (INS-1) cells. FASEB J 12:1173–1182
doi: 10.1096/fasebj.12.12.1173
Roche E, Buteau J, Aniento I, Reig JA, Soria B, Prentki M (1999) Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic beta-cell line INS-1. Diabetes 48:2007–2014. https://doi.org/10.2337/diabetes.48.10.2007
doi: 10.2337/diabetes.48.10.2007 pubmed: 10512366
Chen Y-T, Liao J-W, Tsai Y-C, Tsai F-J (2016) Inhibition of DNA methyltransferase 1 increases nuclear receptor subfamily 4 group A member 1 expression and decreases blood glucose in type 2 diabetes. Oncotarget 7:39162–39170. https://doi.org/10.18632/oncotarget.10043
doi: 10.18632/oncotarget.10043 pubmed: 27322146 pmcid: 5129922
Reynolds MS, Hancock CR, Ray JD, Kener KB, Draney C, Garland K, Hardman J, Bikman BT, Tessem JS (2016) β-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion. Am J Physiol Endocrinol Metab 311:E186–E201
doi: 10.1152/ajpendo.00022.2016
Close A-F, Dadheech N, Lemieux H, Wang Q, Buteau J (2020) Disruption of beta-cell mitochondrial networks by the orphan nuclear receptor Nor1/Nr4a3. Cell 9:168. https://doi.org/10.3390/cells9010168
doi: 10.3390/cells9010168
Tessem JS, Moss LG, Chao LC, Arlotto M, Lu D, Jensen MV, Stephens SB, Tontonoz P, Hohmeier HE, Newgard CB (2014) Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors. Proc Natl Acad Sci U S A 111:5242–5247. https://doi.org/10.1073/pnas.1320953111
doi: 10.1073/pnas.1320953111 pubmed: 24706823 pmcid: 3986138
Ishihara H, Asano T, Tsukuda K, Katagiri H, Inukai K, Anai M, Kikuchi M, Yazaki Y, Miyazaki J-I, Oka Y (1993) Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia 36:1139–1145. https://doi.org/10.1007/BF00401058
doi: 10.1007/BF00401058 pubmed: 8270128
Briand O, Helleboid-Chapman A, Ploton M, Hennuyer N, Carpentier R, Pattou F, Vandewalle B, Moerman E, Gmyr V, Kerr-Conte J, Eeckhoute J, Staels B, Lefebvre P (2012) The nuclear orphan receptor Nur77 is a lipotoxicity sensor regulating glucose-induced insulin secretion in pancreatic β-cells. Mol Endocrinol 26:399–413. https://doi.org/10.1210/me.2011-1317
doi: 10.1210/me.2011-1317 pubmed: 22301783 pmcid: 5417130
Yu C, Cui S, Zong C, Gao W, Xu T, Gao P, Chen J, Qin D, Guan Q, Liu Y (2015) The orphan nuclear receptor NR4A1 protects pancreatic β-cells from endoplasmic reticulum (ER) stress-mediated apoptosis. J Biol Chem 290:20687–20699
doi: 10.1074/jbc.M115.654863
Pu Z, Liu D, Mouguegue L, Patherny HP, Jin C, Sadiq E, Qin D, Yu T, Zong C, Chen J, Zhao R (2020) NR4A1 counteracts JNK activation incurred by ER stress or ROS in pancreatic β-cells for protection. J Cell Mol Med 24:14171–14183
doi: 10.1111/jcmm.16028
Pu Z, Yu T, Liu D, Jin C, Sadiq E, Qiao X, Li X, Chen Y, Zhang J, Tian M, Li S, Zhao R, Wang X (2021) NR4A1 enhances MKP7 expression to diminish JNK activation induced by ROS or ER-stress in pancreatic β cells for surviving. Cell Death Dis 7:133. https://doi.org/10.1038/s41420-021-00521-0
doi: 10.1038/s41420-021-00521-0
Zhan Y, Du X, Chen H, Liu J, Zhao B, Huang D, Li G, Xu Q, Zhang M, Weimer BC, Chen D, Cheng Z, Zhang L, Li Q, Li S, Zheng Z, Song S, Huang Y, Ye Z, Su W, Lin S-C, Shen Y, Wu Q (2008) Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat Chem Biol 4:548–556. https://doi.org/10.1038/nchembio.106
doi: 10.1038/nchembio.106 pubmed: 18690216
Weyrich P, Staiger H, Stancáková A, Schäfer SA, Kirchhoff K, Ullrich S, Ranta F, Gallwitz B, Stefan N, Machicao F, Kuusisto J, Laakso M, Fritsche A, Häring H-U (2009) Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced beta-cell function in non-diabetic subjects. BMC Med Genet 10:77. https://doi.org/10.1186/1471-2350-10-77
doi: 10.1186/1471-2350-10-77 pubmed: 19682370 pmcid: 2741445
Close A-F, Dadheech N, Villela BS, Rouillard C, Buteau J (2019) The orphan nuclear receptor Nor1/Nr4a3 is a negative regulator of β-cell mass. J Biol Chem 294:4889–4897. https://doi.org/10.1074/jbc.RA118.005135
doi: 10.1074/jbc.RA118.005135 pubmed: 30696767 pmcid: 6442030
Gao W, Fu Y, Yu C, Wang S, Zhang Y, Zong C, Xu T, Liu Y, Li X, Wang X (2014) Elevation of NR4A3 expression and its possible role in modulating insulin expression in the pancreatic beta cell. PLoS One 9:e91462. https://doi.org/10.1371/journal.pone.0091462
doi: 10.1371/journal.pone.0091462 pubmed: 24638142 pmcid: 3956668
Wansa KDSA, Harris JM, Yan G, Ordentlich P, Muscat GEO (2003) The AF-1 domain of the orphan nuclear receptor NOR-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. J Biol Chem 278:24776–24790. https://doi.org/10.1074/jbc.M300088200
doi: 10.1074/jbc.M300088200 pubmed: 12709428
Liu Q, Zhu X, Xu L, Fu Y, Garvey WT (2013) 6-Mercaptopurine augments glucose transport activity in skeletal muscle cells in part via a mechanism dependent upon orphan nuclear receptor NR4A3. Am J Physiol Endocrinol Metab 305:E1081–E1092. https://doi.org/10.1152/ajpendo.00169.2013
doi: 10.1152/ajpendo.00169.2013 pubmed: 24022864 pmcid: 3840207
Pearen MA, Ryall JG, Maxwell MA, Ohkura N, Lynch GS, Muscat GEO (2006) The orphan nuclear receptor, NOR-1, is a target of beta-adrenergic signaling in skeletal muscle. Endocrinology 147:5217–5227. https://doi.org/10.1210/en.2006-0447
doi: 10.1210/en.2006-0447 pubmed: 16901967
Takahashi H, Nomiyama T, Terawaki Y, Kawanami T, Hamaguchi Y, Tanaka T, Tanabe M, Bruemmer D, Yanase T (2019) GLP-1 receptor agonist exendin-4 attenuates NR4A orphan nuclear receptor NOR1 expression in vascular smooth muscle cells. J Atheroscler Thromb 26:183–197. https://doi.org/10.5551/jat.43414
doi: 10.5551/jat.43414 pubmed: 29962378 pmcid: 6365156
Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116:511–526. https://doi.org/10.1016/s0092-8674(04)00133-3
doi: 10.1016/s0092-8674(04)00133-3 pubmed: 14980219
Jeyakumar M, Liu X-F, Erdjument-Bromage H, Tempst P, Bagchi MK (2007) Phosphorylation of thyroid hormone receptor-associated nuclear receptor corepressor holocomplex by the DNA-dependent protein kinase enhances its histone deacetylase activity. J Biol Chem 282:9312–9322. https://doi.org/10.1074/jbc.M609009200
doi: 10.1074/jbc.M609009200 pubmed: 17242407
Perissi V, Scafoglio C, Zhang J, Ohgi KA, Rose DW, Glass CK, Rosenfeld MG (2008) TBL1 and TBLR1 phosphorylation on regulated gene promoters overcomes dual CtBP and NCoR/SMRT transcriptional repression checkpoints. Mol Cell 29:755–766. https://doi.org/10.1016/j.molcel.2008.01.020
doi: 10.1016/j.molcel.2008.01.020 pubmed: 18374649 pmcid: 2364611
Li J, Wang C-Y (2008) TBL1–TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol 10:160–169. https://doi.org/10.1038/ncb1684
doi: 10.1038/ncb1684 pubmed: 18193033
Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R (2000) A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 14:1048–1057
doi: 10.1101/gad.14.9.1048
Yoon H-G, Chan DW, Huang Z-Q, Li J, Fondell JD, Qin J, Wong J (2003) Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J 22:1336–1346
doi: 10.1093/emboj/cdg120
Ferrari A, Longo R, Fiorino E, Silva R, Mitro N, Cermenati G, Gilardi F, Desvergne B, Andolfo A, Magagnotti C, Caruso D, de Fabiani E, Hiebert SW, Crestani M (2017) HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue browning. Nat Commun 8:93. https://doi.org/10.1038/s41467-017-00182-7
doi: 10.1038/s41467-017-00182-7 pubmed: 28733645 pmcid: 5522415
Sun Z, Feng D, Fang B, Mullican SE, You S-H, Lim H-W, Everett LJ, Nabel CS, Li Y, Selvakumaran V, Won K-J, Lazar MA (2013) Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell 52:769–782. https://doi.org/10.1016/j.molcel.2013.10.022
doi: 10.1016/j.molcel.2013.10.022 pubmed: 24268577
Chen W-B, Gao L, Wang J, Wang Y-G, Dong Z, Zhao J, Mi Q-S, Zhou L (2016) Conditional ablation of HDAC3 in islet beta cells results in glucose intolerance and enhanced susceptibility to STZ-induced diabetes. Oncotarget 7:57485–57497. https://doi.org/10.18632/oncotarget.11295
doi: 10.18632/oncotarget.11295 pubmed: 27542279 pmcid: 5295367
Remsberg JR, Ediger BN, Ho WY, Damle M, Li Z, Teng C, Lanzillotta C, Stoffers DA, Lazar MA (2017) Deletion of histone deacetylase 3 in adult beta cells improves glucose tolerance via increased insulin secretion. Mol Metab 6:30–37. https://doi.org/10.1016/j.molmet.2016.11.007
doi: 10.1016/j.molmet.2016.11.007 pubmed: 28123935
Liang N, Damdimopoulos A, Goñi S, Huang Z, Vedin L-L, Jakobsson T, Giudici M, Ahmed O, Pedrelli M, Barilla S, Alzaid F, Mendoza A, Schröder T, Kuiper R, Parini P, Hollenberg A, Lefebvre P, Francque S, van Gaal L, Staels B, Venteclef N, Treuter E, Fan R (2019) Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nat Commun 10:1684. https://doi.org/10.1038/s41467-019-09524-z
doi: 10.1038/s41467-019-09524-z pubmed: 30975991 pmcid: 6459876
Drareni K, Ballaire R, Barilla S, Mathew MJ, Toubal A, Fan R, Liang N, Chollet C, Huang Z, Kondili M, Foufelle F, Soprani A, Roussel R, Gautier J-F, Alzaid F, Treuter E, Venteclef N (2018) GPS2 deficiency triggers maladaptive white adipose tissue expansion in obesity via HIF1A activation. Cell Rep 24:2957–2971.e6. https://doi.org/10.1016/j.celrep.2018.08.032
doi: 10.1016/j.celrep.2018.08.032 pubmed: 30208320 pmcid: 6153369
Drareni K, Ballaire R, Alzaid F, Goncalves A, Chollet C, Barilla S, Nguewa J-L, Dias K, Lemoine S, Riveline J-P, Roussel R, Dalmas E, Velho G, Treuter E, Gautier J-F, Venteclef N (2020) Adipocyte reprogramming by the transcriptional coregulator GPS2 impacts beta cell insulin secretion. Cell Rep 32:108141. https://doi.org/10.1016/j.celrep.2020.108141
doi: 10.1016/j.celrep.2020.108141 pubmed: 32937117 pmcid: 7495095
Kulozik P, Jones A, Mattijssen F, Rose AJ, Reimann A, Strzoda D, Kleinsorg S, Raupp C, Kleinschmidt J, Müller-Decker K, Wahli W, Sticht C, Gretz N, von Loeffelholz C, Stockmann M, Pfeiffer A, Stöhr S, Dallinga-Thie GM, Nawroth PP, Diaz MB, Herzig S (2011) Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell Metab 13:389–400. https://doi.org/10.1016/j.cmet.2011.02.011
doi: 10.1016/j.cmet.2011.02.011 pubmed: 21459324
Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, Wendler S, Männle D, Hinz U, Sticht C, Muciek M, Gretz N, Rose AJ, Greiner V, Hofmann TG, Bauer A, Hoheisel J, Berriel Diaz M, Gaida MM, Werner J, Schafmeier T, Strobel O, Herzig S (2015) Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med 7:1048–1062. https://doi.org/10.15252/emmm.201404837
doi: 10.15252/emmm.201404837 pubmed: 26070712 pmcid: 4551343
Gu J-F, Fu W, Qian H-X, Gu W-X, Zong Y, Chen Q, Lu L (2020) TBL1XR1 induces cell proliferation and inhibit cell apoptosis by the PI3K/AKT pathway in pancreatic ductal adenocarcinoma. World J Gastroenterol 26:3586–3602. https://doi.org/10.3748/wjg.v26.i25.3586
doi: 10.3748/wjg.v26.i25.3586 pubmed: 32742128 pmcid: 7366057
Rohm M, Sommerfeld A, Strzoda D, Jones A, Sijmonsma TP, Rudofsky G, Wolfrum C, Sticht C, Gretz N, Zeyda M, Leitner L, Nawroth PP, Stulnig TM, Diaz MB, Vegiopoulos A, Herzig S (2013) Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue. Cell Metab 17:575–585. https://doi.org/10.1016/j.cmet.2013.02.010
doi: 10.1016/j.cmet.2013.02.010 pubmed: 23499424
Schaefer U, Schmeier S, Bajic VB (2011) TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins. Nucleic Acids Res 39:D106–D110. https://doi.org/10.1093/nar/gkq945
doi: 10.1093/nar/gkq945 pubmed: 20965969

Auteurs

Alina A Walth-Hummel (AA)

Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.
German Center for Diabetes Research (DZD), Neuherberg, Germany.

Stephan Herzig (S)

Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.
German Center for Diabetes Research (DZD), Neuherberg, Germany.
Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany.

Maria Rohm (M)

Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany. maria.rohm@helmholtz-muenchen.de.
Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany. maria.rohm@helmholtz-muenchen.de.
German Center for Diabetes Research (DZD), Neuherberg, Germany. maria.rohm@helmholtz-muenchen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH