The first-principles phase diagram of monolayer nanoconfined water.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2022
Historique:
received: 22 10 2021
accepted: 28 06 2022
pubmed: 15 9 2022
medline: 20 9 2022
entrez: 14 9 2022
Statut: ppublish

Résumé

Water in nanoscale cavities is ubiquitous and of central importance to everyday phenomena in geology and biology. However, the properties of nanoscale water can be substantially different from those of bulk water, as shown, for example, by the anomalously low dielectric constant of water in nanochannels

Identifiants

pubmed: 36104556
doi: 10.1038/s41586-022-05036-x
pii: 10.1038/s41586-022-05036-x
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

512-516

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).
doi: 10.1126/science.aat4191
Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).
doi: 10.1038/nature19315
Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).
doi: 10.1038/nature14295
Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).
Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).
doi: 10.1038/35102535
Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).
doi: 10.1038/nnano.2015.37
Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).
doi: 10.1038/nature19363
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
doi: 10.1038/nature12385
Niguès, A., Siria, A., Vincent, P., Poncharal, P. & Bocquet, L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater. 13, 688–693 (2014).
doi: 10.1038/nmat3985
Zhu, Y., Wang, F. & Wu, H. Superheating of monolayer ice in graphene nanocapillaries. J. Chem. Phys. 146, 134703 (2017).
doi: 10.1063/1.4979478
Li, S. & Schmidt, B. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions. Phys. Chem. Chem. Phys. 21, 17640–17654 (2019).
doi: 10.1039/C9CP00849G
Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).
doi: 10.1038/s41586-019-1114-6
Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018).
doi: 10.1038/s41567-017-0017-4
Jiang, J. et al. First-principles molecular dynamics simulations of the spontaneous freezing transition of 2D water in a nanoslit. J. Am. Chem. Soc. 143, 8177–8183 (2021).
doi: 10.1021/jacs.1c03243
Zen, A. et al. Fast and accurate quantum Monte Carlo for molecular crystals. Proc. Natl Acad. Sci. USA 115, 1724–1729 (2018).
doi: 10.1073/pnas.1715434115
Schran, C. et al. Machine learning potentials for complex aqueous systems made simple. Proc. Natl Acad. Sci. USA 118, e2110077118 (2021).
Corsetti, F., Matthews, P. & Artacho, E. Structural and configurational properties of nanoconfined monolayer ice from first principles. Sci. Rep. 6, 18651 (2016).
doi: 10.1038/srep18651
Chen, J., Schusteritsch, G., Pickard, C. J., Salzmann, C. G. & Michaelides, A. Two dimensional ice from first principles: structures and phase transitions. Phys. Rev. Lett. 116, 025501 (2016).
doi: 10.1103/PhysRevLett.116.025501
Björkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502 (2012).
doi: 10.1103/PhysRevLett.108.235502
Zamborlini, G. et al. Nanobubbles at GPa pressure under graphene. Nano Lett. 15, 6162–6169 (2015).
doi: 10.1021/acs.nanolett.5b02475
Chen, J., Zen, A., Brandenburg, J. G., Alfè, D. & Michaelides, A. Evidence for stable square ice from quantum Monte Carlo. Phys. Rev. B 94, 220102 (2016).
doi: 10.1103/PhysRevB.94.220102
Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).
doi: 10.1088/0953-8984/23/5/053201
Kapil, V. & Engel, E. A. A complete description of thermodynamic stabilities of molecular crystals. Proc. Natl Acad. Sci. USA 119, e2111769119 (2022).
Ferguson, A. L., Giovambattista, N., Rossky, P. J., Panagiotopoulos, A. Z. & Debenedetti, P. G. A computational investigation of the phase behavior and capillary sublimation of water confined between nanoscale hydrophobic plates. J. Chem. Phys. 137, 144501 (2012).
doi: 10.1063/1.4755750
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973).
doi: 10.1088/0022-3719/6/7/010
Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nat. Phys. 3, 473–476 (2007).
doi: 10.1038/nphys625
Vilanova, O. & Franzese, G. Structural and dynamical properties of nanoconfined supercooled water. Preprint at arXiv http://arxiv.org/abs/1102.2864 (2011).
Muñoz-Santiburcio, D. & Marx, D. Confinement-controlled aqueous chemistry within nanometric slit pores. Chem. Rev. 121, 6293–6320 (2021).
doi: 10.1021/acs.chemrev.0c01292
Kreuer, K.-D. Proton conductivity: materials and applications. Chem. Mater. 8, 610–641 (1996).
doi: 10.1021/cm950192a
Sugimura, E. et al. Experimental evidence of superionic conduction in H
doi: 10.1063/1.4766816
Cheng, B., Engel, E. A., Behler, J., Dellago, C. & Ceriotti, M. Ab initio thermodynamics of liquid and solid water. Proc. Natl Acad. Sci. 116, 1110–1115 (2019).
doi: 10.1073/pnas.1815117116
Behler, J. Four generations of high-dimensional neural network potentials. Chem. Rev. https://doi.org/10.1021/acs.chemrev.0c00868 (2021).
Schran, C., Brezina, K. & Marsalek, O. Committee neural network potentials control generalization errors and enable active learning. J. Chem. Phys. 153, 104105 (2020).
doi: 10.1063/5.0016004
Conde, M. M., Gonzalez, M. A., Abascal, J. L. F. & Vega, C. Determining the phase diagram of water from direct coexistence simulations: the phase diagram of the TIP4P/2005 model revisited. J. Chem. Phys. 139, 154505 (2013).
doi: 10.1063/1.4824627
Kapil, V. et al. Universal Force Engine For Advanced Molecular Simulations.Comput. Phys. Commun. 236, 214–223 (2019).
doi: 10.1016/j.cpc.2018.09.020
Singraber, A., Behler, J. & Dellago, C. Library-based LAMMPS implementation of high-dimensional neural network potentials. J. Chem. Theory Comput. 15, 1827–1840 (2019).
doi: 10.1021/acs.jctc.8b00770
Larsen, A. H.et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).
Grasselli, F. & Baroni, S. Topological quantization and gauge invariance of charge transport in liquid insulators. Nat. Phys. 15, 967–972 (2019).
doi: 10.1038/s41567-019-0562-0
Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).
doi: 10.1063/5.0007045
Marsalek, O. & Markland, T. E. Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett. 8, 1545–1551 (2017).
doi: 10.1021/acs.jpclett.7b00391
Needs, R. J., Towler, M. D., Drummond, N. D. & Rios, P. L. Continuum variational and diffusion quantum Monte Carlo calculations. J. Phys. Condens. Matter 22, 023201 (2010).
doi: 10.1088/0953-8984/22/2/023201
Mitas, L., Shirley, E. L. & Ceperley, D. M. Nonlocal pseudopotentials and diffusion Monte Carlo. J. Chem. Phys. 95, 3467 (1991).
doi: 10.1063/1.460849
Brandenburg, J. G. et al. Physisorption of water on graphene: subchemical accuracy from many-body electronic structure methods. J. Phys. Chem. Lett. 10, 358–368 (2019).
doi: 10.1021/acs.jpclett.8b03679

Auteurs

Venkat Kapil (V)

Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK. vk380@cam.ac.uk.

Christoph Schran (C)

Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK. cs2121@cam.ac.uk.
Department of Physics and Astronomy, University College London, London, UK. cs2121@cam.ac.uk.
Thomas Young Centre, London Centre for Nanotechnology, London, UK. cs2121@cam.ac.uk.

Andrea Zen (A)

Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Napoli, Italy.
Department of Earth Sciences, University College London, London, UK.

Ji Chen (J)

School of Physics, Interdisciplinary Institute of Light-Element Quantum Materials and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, China.

Chris J Pickard (CJ)

Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
Advanced Institute for Materials Research, Tohoku University, Sendai, Japan.

Angelos Michaelides (A)

Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK. am452@cam.ac.uk.
Department of Physics and Astronomy, University College London, London, UK. am452@cam.ac.uk.
Thomas Young Centre, London Centre for Nanotechnology, London, UK. am452@cam.ac.uk.

Classifications MeSH