Fabrication of a magnetic alginate-silk fibroin hydrogel, containing halloysite nanotubes as a novel nanocomposite for biological and hyperthermia applications.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 Sep 2022
14 Sep 2022
Historique:
received:
30
05
2022
accepted:
30
08
2022
entrez:
14
9
2022
pubmed:
15
9
2022
medline:
17
9
2022
Statut:
epublish
Résumé
In this study, the main focus was on designing and synthesizing a novel magnetic nanobiocomposite and its application in hyperthermia cancer treatment. Regarding this aim, sodium alginate (SA) hydrogel with CaCl
Identifiants
pubmed: 36104466
doi: 10.1038/s41598-022-19511-y
pii: 10.1038/s41598-022-19511-y
pmc: PMC9474815
doi:
Substances chimiques
Alginates
0
Hydrogels
0
Fibroins
9007-76-5
Clay
T1FAD4SS2M
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15431Informations de copyright
© 2022. The Author(s).
Références
Eivazzadeh-Keihan, R. et al. Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. Int. J. Biol. Macromol. 192, 7–15 (2021).
pubmed: 34571124
doi: 10.1016/j.ijbiomac.2021.09.099
Muir, V. G. & Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 121, 10908–10949 (2020).
pubmed: 33356174
doi: 10.1021/acs.chemrev.0c00923
Eivazzadeh-Keihan, R. et al. Synthesis and characterization of cellulose, β-cyclodextrin, silk fibroinbased hydrogel containing copper-doped cobalt ferrite nanospheres and exploration of its biocompatibility. J. Nanostruct. Chem. 20, 1–11 (2022).
Eivazzadeh-Keihan, R. et al. Hybrid bionanocomposite containing magnesium hydroxide nanoparticles embedded in a carboxymethyl cellulose hydrogel plus silk fibroin as a scaffold for wound dressing applications. ACS Appl. Mater. Interfaces 13, 33840–33849 (2021).
pubmed: 34278788
doi: 10.1021/acsami.1c07285
Eivazzadeh-Keihan, R. et al. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int. J. Biol. Macromol. 162, 1959–1971 (2020).
pubmed: 32814101
doi: 10.1016/j.ijbiomac.2020.08.090
Koyyada, A. & Orsu, P. Nanofibrous scaffolds of carboxymethyl guargum potentiated with reduced graphene oxide for in vitro and in vivo wound healing applications. Int. J. Pharm. 607, 121035 (2021).
pubmed: 34438006
doi: 10.1016/j.ijpharm.2021.121035
Eivazzadeh-Keihan, R. et al. Chitosan hydrogel/silk fibroin/Mg(OH)
doi: 10.1038/s41598-020-80133-3
Zhang, M. et al. Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing. Carbohydr. Polym. 253, 117213 (2021).
pubmed: 33278978
doi: 10.1016/j.carbpol.2020.117213
Tavakoli, S., Kharaziha, M., Nemati, S. & Kalateh, A. Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material. Carbohydr. Polym. 251, 117013 (2021).
pubmed: 33142576
doi: 10.1016/j.carbpol.2020.117013
Pilevaran, M., Tavakolipour, H., Naji-Tabasi, S. & Elhamirad, A. H. Investigation of functional, textural, and thermal properties of soluble complex of whey protein–xanthan gum hydrogel. J. Food Process Eng. 44, e13751 (2021).
doi: 10.1111/jfpe.13751
Eivazzadeh-Keihan, R., Radinekiyan, F., Madanchi, H., Aliabadi, H. A. M. & Maleki, A. Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr. Polym. 248, 116802 (2020).
pubmed: 32919538
doi: 10.1016/j.carbpol.2020.116802
Eivazzadeh-Keihan, R. et al. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Mater. Sci. Eng. C 107, 110267 (2020).
doi: 10.1016/j.msec.2019.110267
Ghorbani, M., Roshangar, L. & Rad, J. S. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur. Polym. J. 130, 109697 (2020).
doi: 10.1016/j.eurpolymj.2020.109697
Dodero, A., Alloisio, M., Vicini, S. & Castellano, M. Preparation of composite alginate-based electrospun membranes loaded with ZnO nanoparticles. Carbohydr. Polym. 227, 115371 (2020).
pubmed: 31590869
doi: 10.1016/j.carbpol.2019.115371
Kothale, D. et al. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications. Curr. Drug Deliv. 17, 755–775 (2020).
pubmed: 32778024
doi: 10.2174/1567201817666200810110226
Akrami-Hasan-Kohal, M., Tayebi, L. & Ghorbani, M. Curcumin-loaded naturally-based nanofibers as active wound dressing mats: Morphology, drug release, cell proliferation, and cell adhesion studies. New J. Chem. 44, 10343–10351 (2020).
doi: 10.1039/D0NJ01594F
Sharma, S., Sharma, B., Shekhar, S. & Jain, P. Polymeric and Natural Composites 401–423 (Springer, 2022).
doi: 10.1007/978-3-030-70266-3_13
Khorshidi, S., Mohebbali, M., Imani, R., Mahmoodi, M. & Solouk, A. Electrospun fibroin/graphene oxide nanocomposite mats: An optimization for potential wound dressing applications. Fibers Polym. 21, 480–488 (2020).
doi: 10.1007/s12221-020-9465-z
Yang, L. et al. A promising wound dressing from regenerated silk fibroin sponge with sustained release of silver nanoparticles. J. Renew. Mater. 9, 295 (2021).
doi: 10.32604/jrm.2021.012271
He, X. et al. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carbohydr. Polym. 247, 116689 (2020).
pubmed: 32829817
doi: 10.1016/j.carbpol.2020.116689
Jauković, V. et al. Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release. Mater. Sci. Eng. C 123, 112029 (2021).
doi: 10.1016/j.msec.2021.112029
Hajizadeh, Z., Maleki, A., Rahimi, J. & Eivazzadeh-Keihan, R. Halloysite nanotubes modified by Fe
doi: 10.1007/s12633-019-00224-3
Veerabadran, N. G., Price, R. R. & Lvov, Y. M. Clay nanotubes for encapsulation and sustained release of drugs. NANO 2, 115–120 (2007).
doi: 10.1142/S1793292007000441
Taheri-Ledari, R. et al. Plasmonic photothermal release of docetaxel by gold nanoparticles incorporated onto halloysite nanotubes with conjugated 2D8-E3 antibodies for selective cancer therapy. J. Nanobiotechnol. 19, 1–21 (2021).
doi: 10.1186/s12951-021-00982-6
Maroufi, L. Y. & Ghorbani, M. Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application. Int. J. Biol. Macromol. 177, 485–494 (2021).
doi: 10.1016/j.ijbiomac.2021.02.113
Massaro, M., Lazzara, G., Noto, R. & Riela, S. Halloysite nanotubes: A green resource for materials and life sciences. Rend. Lincei Sci. Fis. Nat. 31, 213–221 (2020).
doi: 10.1007/s12210-020-00886-x
Bertolino, V., Cavallaro, G., Milioto, S. & Lazzara, G. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr. Polym. 245, 116502 (2020).
pubmed: 32718613
doi: 10.1016/j.carbpol.2020.116502
Hasani, M., Abdouss, M. & Shojaei, S. Nanocontainers for drug delivery systems: A review of Halloysite nanotubes and their properties. Int. J. Artif. Organs 44, 426–433 (2021).
pubmed: 33172333
doi: 10.1177/0391398820968836
Kazemi-Aghdam, F., Jahed, V., Dehghan-Niri, M., Ganji, F. & Vasheghani-Farahani, E. Injectable chitosan hydrogel embedding modified Halloysite nanotubes for bone tissue engineering. Carbohydr. Polym. 269, 118311 (2021).
pubmed: 34294325
doi: 10.1016/j.carbpol.2021.118311
Taherian, A., Esfandiari, N. & Rouhani, S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnol. 12, 1–20 (2021).
doi: 10.1186/s12645-021-00086-8
Eivazzadeh-Keihan, R. et al. Fe
doi: 10.1016/j.colsurfa.2019.124335
Derakhshankhah, H. et al. A bio-inspired gelatin-based pH-and thermal-sensitive magnetic hydrogel for in vitro chemo/hyperthermia treatment of breast cancer cells. J. Appl. Polym. Sci. 138, 50578 (2021).
doi: 10.1002/app.50578
Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Bani, M. S. & Azizi, M. A new generation of star polymer: Magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy. J. Mater. Sci. 55, 319–336 (2020).
doi: 10.1007/s10853-019-04005-6
Dahaghin, A. et al. A comparative study on the effects of increase in injection sites on the magnetic nanoparticles hyperthermia. J. Drug Deliv. Sci. Technol. 63, 102542 (2021).
doi: 10.1016/j.jddst.2021.102542
Dahaghin, A. et al. A numerical investigation into the magnetic nanoparticles hyperthermia cancer treatment injection strategies. Biocybern. Biomed. Eng. 41, 516–526 (2021).
doi: 10.1016/j.bbe.2021.04.002
Eivazzadeh-Keihan, R. et al. Magnetic copper ferrite nanoparticles functionalized by aromatic polyamide chains for hyperthermia applications. Langmuir 37, 8847–8854 (2021).
pubmed: 34259525
doi: 10.1021/acs.langmuir.1c01251
Eivazzadeh-Keihan, R., Radinekiyan, F., Asgharnasl, S., Maleki, A. & Bahreinizad, H. A natural and eco-friendly magnetic nanobiocomposite based on activated chitosan for heavy metals adsorption and the in-vitro hyperthermia of cancer therapy. J. Mater. Res. Technol. 9, 12244–12259 (2020).
doi: 10.1016/j.jmrt.2020.08.096
Suleman, M. & Riaz, S. In silico study of enhanced permeation and retention effect and hyperthermia of porous tumor. Med. Eng. Phys. 86, 128–137 (2020).
pubmed: 33261726
doi: 10.1016/j.medengphy.2020.11.003
Eivazzadeh-Keihan, R. et al. Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv. 11, 17914–17923 (2021).
pubmed: 35480185
pmcid: 9033182
doi: 10.1039/D1RA01300A
Komijani, S. et al. Characterization of a novel mCH3 conjugated anti-PcrV scFv molecule. Sci. Rep. 11, 1–14 (2021).
doi: 10.1038/s41598-021-86491-w
Nikravesh, F. Y. et al. Extension of human GCSF serum half-life by the fusion of albumin binding domain. Sci. Rep. 12, 1–13 (2022).
doi: 10.1038/s41598-021-04560-6
Gianak, O., Pavlidou, E., Sarafidis, C., Karageorgiou, V. & Deliyanni, E. Silk fibroin nanoparticles for drug delivery: Effect of bovine serum albumin and magnetic nanoparticles addition on drug encapsulation and release. Separations 5, 25 (2018).
doi: 10.3390/separations5020025
Lv, B.-H., Tan, W., Zhu, C.-C., Shang, X. & Zhang, L. Properties of a stable and sustained-release formulation of recombinant human parathyroid hormone (rhPTH) with chitosan and silk fibroin microparticles. Med. Sci. Monit. 24, 7532 (2018).
pubmed: 30345994
pmcid: 6206812
doi: 10.12659/MSM.911203
Figueiredo, M. C., Trieu, V. & Koper, M. T. Electrochemical conversion of CO
doi: 10.1021/acssuschemeng.9b01390
Eivazzadeh-Keihan, R. et al. Magnetic carboxymethyl cellulose/silk fibroin hydrogel embedded with halloysite nanotubes as a biocompatible nanobiocomposite with hyperthermia application. Mater. Chem. Phys. 20, 126347 (2022).
doi: 10.1016/j.matchemphys.2022.126347
Zhang, B., Li, S., Wang, Y., Wu, Y. & Zhang, H. Halloysite nanotube-based self-healing fluorescence hydrogels in fabricating 3D cube containing UV-sensitive QR code information. J. Colloid Interface Sci. 617, 353–362 (2022).
pubmed: 35279570
doi: 10.1016/j.jcis.2022.03.025
Rostami, Z., Rouhanizadeh, M., Nami, N. & Zareyee, D. Fe
Salisu, A., Sanagi, M. M., Abu Naim, A., Wan Ibrahim, W. A. & Abd Karim, K. J. Removal of lead ions from aqueous solutions using sodium alginate-graft-poly (methyl methacrylate) beads. Desalin. Water Treat. 57, 15353–15361 (2016).
doi: 10.1080/19443994.2015.1071685
Polat, G. & Açıkel, Y. S. Synthesis and characterization of magnetic halloysite-alginate beads for the removal of lead (II) ions from aqueous solutions. J. Polym. Environ. 27, 1971–1987 (2019).
doi: 10.1007/s10924-019-01489-w
Zhang, X. & Pan, Z. Microstructure transitions and dry-wet spinnability of silk fibroin protein from waste silk quilt. Polymers 11, 1622 (2019).
pmcid: 6848937
doi: 10.3390/polym11101622
Wang, S. et al. Insulin-loaded silk fibroin microneedles as sustained release system. ACS Biomater. Sci. Eng. 5, 1887–1894 (2019).
pubmed: 33405562
doi: 10.1021/acsbiomaterials.9b00229
Ji, M. et al. Green synthesis, characterization and in vitro release of cinnamaldehyde/sodium alginate/chitosan nanoparticles. Food Hydrocoll. 90, 515–522 (2019).
doi: 10.1016/j.foodhyd.2018.12.027
Calvino, M. M., Cavallaro, G., Lisuzzo, L., Milioto, S. & Lazzara, G. Separation of halloysite/kaolinite mixtures in water controlled by sucrose addition: The influence of the attractive forces on the sedimentation behavior. Colloids Surf. A Physicochem. Eng. Asp. 641, 128530 (2022).
doi: 10.1016/j.colsurfa.2022.128530
Lisuzzo, L., Cavallaro, G., Milioto, S. & Lazzara, G. Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis. J. Colloid Interface Sci. 608, 424–434 (2022).
pubmed: 34626986
doi: 10.1016/j.jcis.2021.09.146
Bertolino, V. et al. Effect of the biopolymer charge and the nanoclay morphology on nanocomposite materials. Ind. Eng. Chem. Res. 55, 7373–7380 (2016).
doi: 10.1021/acs.iecr.6b01816
Athithan, A. S., Jeyasundari, J., Renuga, D. & Jacob, Y. B. A. Annona muricata fruit mediated biosynthesis, physicochemical characterization of magnetite (Fe
doi: 10.31788/RJC.2020.1335789
Eivazzadeh-Keihan, R. et al. A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int. J. Biol. Macromol. 140, 407–414 (2019).
pubmed: 31425760
doi: 10.1016/j.ijbiomac.2019.08.031