Fabrication of a magnetic alginate-silk fibroin hydrogel, containing halloysite nanotubes as a novel nanocomposite for biological and hyperthermia applications.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
14 Sep 2022
Historique:
received: 30 05 2022
accepted: 30 08 2022
entrez: 14 9 2022
pubmed: 15 9 2022
medline: 17 9 2022
Statut: epublish

Résumé

In this study, the main focus was on designing and synthesizing a novel magnetic nanobiocomposite and its application in hyperthermia cancer treatment. Regarding this aim, sodium alginate (SA) hydrogel with CaCl

Identifiants

pubmed: 36104466
doi: 10.1038/s41598-022-19511-y
pii: 10.1038/s41598-022-19511-y
pmc: PMC9474815
doi:

Substances chimiques

Alginates 0
Hydrogels 0
Fibroins 9007-76-5
Clay T1FAD4SS2M

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

15431

Informations de copyright

© 2022. The Author(s).

Références

Eivazzadeh-Keihan, R. et al. Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. Int. J. Biol. Macromol. 192, 7–15 (2021).
pubmed: 34571124 doi: 10.1016/j.ijbiomac.2021.09.099
Muir, V. G. & Burdick, J. A. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem. Rev. 121, 10908–10949 (2020).
pubmed: 33356174 doi: 10.1021/acs.chemrev.0c00923
Eivazzadeh-Keihan, R. et al. Synthesis and characterization of cellulose, β-cyclodextrin, silk fibroinbased hydrogel containing copper-doped cobalt ferrite nanospheres and exploration of its biocompatibility. J. Nanostruct. Chem. 20, 1–11 (2022).
Eivazzadeh-Keihan, R. et al. Hybrid bionanocomposite containing magnesium hydroxide nanoparticles embedded in a carboxymethyl cellulose hydrogel plus silk fibroin as a scaffold for wound dressing applications. ACS Appl. Mater. Interfaces 13, 33840–33849 (2021).
pubmed: 34278788 doi: 10.1021/acsami.1c07285
Eivazzadeh-Keihan, R. et al. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int. J. Biol. Macromol. 162, 1959–1971 (2020).
pubmed: 32814101 doi: 10.1016/j.ijbiomac.2020.08.090
Koyyada, A. & Orsu, P. Nanofibrous scaffolds of carboxymethyl guargum potentiated with reduced graphene oxide for in vitro and in vivo wound healing applications. Int. J. Pharm. 607, 121035 (2021).
pubmed: 34438006 doi: 10.1016/j.ijpharm.2021.121035
Eivazzadeh-Keihan, R. et al. Chitosan hydrogel/silk fibroin/Mg(OH)
doi: 10.1038/s41598-020-80133-3
Zhang, M. et al. Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing. Carbohydr. Polym. 253, 117213 (2021).
pubmed: 33278978 doi: 10.1016/j.carbpol.2020.117213
Tavakoli, S., Kharaziha, M., Nemati, S. & Kalateh, A. Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material. Carbohydr. Polym. 251, 117013 (2021).
pubmed: 33142576 doi: 10.1016/j.carbpol.2020.117013
Pilevaran, M., Tavakolipour, H., Naji-Tabasi, S. & Elhamirad, A. H. Investigation of functional, textural, and thermal properties of soluble complex of whey protein–xanthan gum hydrogel. J. Food Process Eng. 44, e13751 (2021).
doi: 10.1111/jfpe.13751
Eivazzadeh-Keihan, R., Radinekiyan, F., Madanchi, H., Aliabadi, H. A. M. & Maleki, A. Graphene oxide/alginate/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr. Polym. 248, 116802 (2020).
pubmed: 32919538 doi: 10.1016/j.carbpol.2020.116802
Eivazzadeh-Keihan, R. et al. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Mater. Sci. Eng. C 107, 110267 (2020).
doi: 10.1016/j.msec.2019.110267
Ghorbani, M., Roshangar, L. & Rad, J. S. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur. Polym. J. 130, 109697 (2020).
doi: 10.1016/j.eurpolymj.2020.109697
Dodero, A., Alloisio, M., Vicini, S. & Castellano, M. Preparation of composite alginate-based electrospun membranes loaded with ZnO nanoparticles. Carbohydr. Polym. 227, 115371 (2020).
pubmed: 31590869 doi: 10.1016/j.carbpol.2019.115371
Kothale, D. et al. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications. Curr. Drug Deliv. 17, 755–775 (2020).
pubmed: 32778024 doi: 10.2174/1567201817666200810110226
Akrami-Hasan-Kohal, M., Tayebi, L. & Ghorbani, M. Curcumin-loaded naturally-based nanofibers as active wound dressing mats: Morphology, drug release, cell proliferation, and cell adhesion studies. New J. Chem. 44, 10343–10351 (2020).
doi: 10.1039/D0NJ01594F
Sharma, S., Sharma, B., Shekhar, S. & Jain, P. Polymeric and Natural Composites 401–423 (Springer, 2022).
doi: 10.1007/978-3-030-70266-3_13
Khorshidi, S., Mohebbali, M., Imani, R., Mahmoodi, M. & Solouk, A. Electrospun fibroin/graphene oxide nanocomposite mats: An optimization for potential wound dressing applications. Fibers Polym. 21, 480–488 (2020).
doi: 10.1007/s12221-020-9465-z
Yang, L. et al. A promising wound dressing from regenerated silk fibroin sponge with sustained release of silver nanoparticles. J. Renew. Mater. 9, 295 (2021).
doi: 10.32604/jrm.2021.012271
He, X. et al. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carbohydr. Polym. 247, 116689 (2020).
pubmed: 32829817 doi: 10.1016/j.carbpol.2020.116689
Jauković, V. et al. Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release. Mater. Sci. Eng. C 123, 112029 (2021).
doi: 10.1016/j.msec.2021.112029
Hajizadeh, Z., Maleki, A., Rahimi, J. & Eivazzadeh-Keihan, R. Halloysite nanotubes modified by Fe
doi: 10.1007/s12633-019-00224-3
Veerabadran, N. G., Price, R. R. & Lvov, Y. M. Clay nanotubes for encapsulation and sustained release of drugs. NANO 2, 115–120 (2007).
doi: 10.1142/S1793292007000441
Taheri-Ledari, R. et al. Plasmonic photothermal release of docetaxel by gold nanoparticles incorporated onto halloysite nanotubes with conjugated 2D8-E3 antibodies for selective cancer therapy. J. Nanobiotechnol. 19, 1–21 (2021).
doi: 10.1186/s12951-021-00982-6
Maroufi, L. Y. & Ghorbani, M. Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application. Int. J. Biol. Macromol. 177, 485–494 (2021).
doi: 10.1016/j.ijbiomac.2021.02.113
Massaro, M., Lazzara, G., Noto, R. & Riela, S. Halloysite nanotubes: A green resource for materials and life sciences. Rend. Lincei Sci. Fis. Nat. 31, 213–221 (2020).
doi: 10.1007/s12210-020-00886-x
Bertolino, V., Cavallaro, G., Milioto, S. & Lazzara, G. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr. Polym. 245, 116502 (2020).
pubmed: 32718613 doi: 10.1016/j.carbpol.2020.116502
Hasani, M., Abdouss, M. & Shojaei, S. Nanocontainers for drug delivery systems: A review of Halloysite nanotubes and their properties. Int. J. Artif. Organs 44, 426–433 (2021).
pubmed: 33172333 doi: 10.1177/0391398820968836
Kazemi-Aghdam, F., Jahed, V., Dehghan-Niri, M., Ganji, F. & Vasheghani-Farahani, E. Injectable chitosan hydrogel embedding modified Halloysite nanotubes for bone tissue engineering. Carbohydr. Polym. 269, 118311 (2021).
pubmed: 34294325 doi: 10.1016/j.carbpol.2021.118311
Taherian, A., Esfandiari, N. & Rouhani, S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nanotechnol. 12, 1–20 (2021).
doi: 10.1186/s12645-021-00086-8
Eivazzadeh-Keihan, R. et al. Fe
doi: 10.1016/j.colsurfa.2019.124335
Derakhshankhah, H. et al. A bio-inspired gelatin-based pH-and thermal-sensitive magnetic hydrogel for in vitro chemo/hyperthermia treatment of breast cancer cells. J. Appl. Polym. Sci. 138, 50578 (2021).
doi: 10.1002/app.50578
Eivazzadeh-Keihan, R., Radinekiyan, F., Maleki, A., Bani, M. S. & Azizi, M. A new generation of star polymer: Magnetic aromatic polyamides with unique microscopic flower morphology and in vitro hyperthermia of cancer therapy. J. Mater. Sci. 55, 319–336 (2020).
doi: 10.1007/s10853-019-04005-6
Dahaghin, A. et al. A comparative study on the effects of increase in injection sites on the magnetic nanoparticles hyperthermia. J. Drug Deliv. Sci. Technol. 63, 102542 (2021).
doi: 10.1016/j.jddst.2021.102542
Dahaghin, A. et al. A numerical investigation into the magnetic nanoparticles hyperthermia cancer treatment injection strategies. Biocybern. Biomed. Eng. 41, 516–526 (2021).
doi: 10.1016/j.bbe.2021.04.002
Eivazzadeh-Keihan, R. et al. Magnetic copper ferrite nanoparticles functionalized by aromatic polyamide chains for hyperthermia applications. Langmuir 37, 8847–8854 (2021).
pubmed: 34259525 doi: 10.1021/acs.langmuir.1c01251
Eivazzadeh-Keihan, R., Radinekiyan, F., Asgharnasl, S., Maleki, A. & Bahreinizad, H. A natural and eco-friendly magnetic nanobiocomposite based on activated chitosan for heavy metals adsorption and the in-vitro hyperthermia of cancer therapy. J. Mater. Res. Technol. 9, 12244–12259 (2020).
doi: 10.1016/j.jmrt.2020.08.096
Suleman, M. & Riaz, S. In silico study of enhanced permeation and retention effect and hyperthermia of porous tumor. Med. Eng. Phys. 86, 128–137 (2020).
pubmed: 33261726 doi: 10.1016/j.medengphy.2020.11.003
Eivazzadeh-Keihan, R. et al. Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin–agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv. 11, 17914–17923 (2021).
pubmed: 35480185 pmcid: 9033182 doi: 10.1039/D1RA01300A
Komijani, S. et al. Characterization of a novel mCH3 conjugated anti-PcrV scFv molecule. Sci. Rep. 11, 1–14 (2021).
doi: 10.1038/s41598-021-86491-w
Nikravesh, F. Y. et al. Extension of human GCSF serum half-life by the fusion of albumin binding domain. Sci. Rep. 12, 1–13 (2022).
doi: 10.1038/s41598-021-04560-6
Gianak, O., Pavlidou, E., Sarafidis, C., Karageorgiou, V. & Deliyanni, E. Silk fibroin nanoparticles for drug delivery: Effect of bovine serum albumin and magnetic nanoparticles addition on drug encapsulation and release. Separations 5, 25 (2018).
doi: 10.3390/separations5020025
Lv, B.-H., Tan, W., Zhu, C.-C., Shang, X. & Zhang, L. Properties of a stable and sustained-release formulation of recombinant human parathyroid hormone (rhPTH) with chitosan and silk fibroin microparticles. Med. Sci. Monit. 24, 7532 (2018).
pubmed: 30345994 pmcid: 6206812 doi: 10.12659/MSM.911203
Figueiredo, M. C., Trieu, V. & Koper, M. T. Electrochemical conversion of CO
doi: 10.1021/acssuschemeng.9b01390
Eivazzadeh-Keihan, R. et al. Magnetic carboxymethyl cellulose/silk fibroin hydrogel embedded with halloysite nanotubes as a biocompatible nanobiocomposite with hyperthermia application. Mater. Chem. Phys. 20, 126347 (2022).
doi: 10.1016/j.matchemphys.2022.126347
Zhang, B., Li, S., Wang, Y., Wu, Y. & Zhang, H. Halloysite nanotube-based self-healing fluorescence hydrogels in fabricating 3D cube containing UV-sensitive QR code information. J. Colloid Interface Sci. 617, 353–362 (2022).
pubmed: 35279570 doi: 10.1016/j.jcis.2022.03.025
Rostami, Z., Rouhanizadeh, M., Nami, N. & Zareyee, D. Fe
Salisu, A., Sanagi, M. M., Abu Naim, A., Wan Ibrahim, W. A. & Abd Karim, K. J. Removal of lead ions from aqueous solutions using sodium alginate-graft-poly (methyl methacrylate) beads. Desalin. Water Treat. 57, 15353–15361 (2016).
doi: 10.1080/19443994.2015.1071685
Polat, G. & Açıkel, Y. S. Synthesis and characterization of magnetic halloysite-alginate beads for the removal of lead (II) ions from aqueous solutions. J. Polym. Environ. 27, 1971–1987 (2019).
doi: 10.1007/s10924-019-01489-w
Zhang, X. & Pan, Z. Microstructure transitions and dry-wet spinnability of silk fibroin protein from waste silk quilt. Polymers 11, 1622 (2019).
pmcid: 6848937 doi: 10.3390/polym11101622
Wang, S. et al. Insulin-loaded silk fibroin microneedles as sustained release system. ACS Biomater. Sci. Eng. 5, 1887–1894 (2019).
pubmed: 33405562 doi: 10.1021/acsbiomaterials.9b00229
Ji, M. et al. Green synthesis, characterization and in vitro release of cinnamaldehyde/sodium alginate/chitosan nanoparticles. Food Hydrocoll. 90, 515–522 (2019).
doi: 10.1016/j.foodhyd.2018.12.027
Calvino, M. M., Cavallaro, G., Lisuzzo, L., Milioto, S. & Lazzara, G. Separation of halloysite/kaolinite mixtures in water controlled by sucrose addition: The influence of the attractive forces on the sedimentation behavior. Colloids Surf. A Physicochem. Eng. Asp. 641, 128530 (2022).
doi: 10.1016/j.colsurfa.2022.128530
Lisuzzo, L., Cavallaro, G., Milioto, S. & Lazzara, G. Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis. J. Colloid Interface Sci. 608, 424–434 (2022).
pubmed: 34626986 doi: 10.1016/j.jcis.2021.09.146
Bertolino, V. et al. Effect of the biopolymer charge and the nanoclay morphology on nanocomposite materials. Ind. Eng. Chem. Res. 55, 7373–7380 (2016).
doi: 10.1021/acs.iecr.6b01816
Athithan, A. S., Jeyasundari, J., Renuga, D. & Jacob, Y. B. A. Annona muricata fruit mediated biosynthesis, physicochemical characterization of magnetite (Fe
doi: 10.31788/RJC.2020.1335789
Eivazzadeh-Keihan, R. et al. A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int. J. Biol. Macromol. 140, 407–414 (2019).
pubmed: 31425760 doi: 10.1016/j.ijbiomac.2019.08.031

Auteurs

Reza Eivazzadeh-Keihan (R)

Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.

Zahra Sadat (Z)

Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

Hooman Aghamirza Moghim Aliabadi (H)

Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran.

Fatemeh Ganjali (F)

Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

Amir Kashtiaray (A)

Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

Milad Salimi Bani (M)

Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

Samira Komijani (S)

Biotechnology Research Center, Pasteur Institute of Iran, No.358, 12 Farvardin St., Tehran, 1316943551, Iran.
Department of Biotechnology School of Biology, Alzahra University, Tehran, Iran.

Mohammad Mahdi Ahadian (MM)

Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.

Nabi Salehpour (N)

Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran.

Reza Ahangari Cohan (R)

Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.

Ali Maleki (A)

Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran. maleki@iust.ac.ir.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH