An insight into therapeutic efficacy of heterocycles as histone-modifying enzyme inhibitors that targets cancer epigenetic pathways.


Journal

Chemical biology & drug design
ISSN: 1747-0285
Titre abrégé: Chem Biol Drug Des
Pays: England
ID NLM: 101262549

Informations de publication

Date de publication:
11 2022
Historique:
revised: 17 08 2022
received: 23 05 2022
accepted: 21 08 2022
pubmed: 5 9 2022
medline: 13 10 2022
entrez: 4 9 2022
Statut: ppublish

Résumé

Histone-modifying enzymes are the key regulators involved in the post-translational modification of histone and non-histone. These enzymes are responsible for the epigenetic control of cellular functions. However, deregulation of the activity of these enzymes results in uncontrolled disorders such as cancer and inflammatory and neurological diseases. The study includes histone acetyltransferases, deacetylases, methyl transferases, demethylases, DNA methyl transferases, and their potent inhibitors which are in a clinical trial and used as medicinal drugs. The present review covers the heterocycles as target-specific inhibitors of histone-modifying enzyme, more specifically histone acetyltransferases. This review also confers more recent reports on heterocycles as potential HAT inhibitors covered from 2016 to 2022 and future perspectives of these heterocycles in epigenetic therapy.

Identifiants

pubmed: 36059065
doi: 10.1111/cbdd.14135
doi:

Substances chimiques

Enzyme Inhibitors 0
Histone Deacetylase Inhibitors 0
Histones 0
Histone Acetyltransferases EC 2.3.1.48
Histone Deacetylases EC 3.5.1.98

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

682-698

Informations de copyright

© 2022 John Wiley & Sons Ltd.

Références

Abbas, E. M. H., Farghaly, T. A., Sabour, R., Shaaban, M. R., & Abdallah, Z. A. (2022). Design, synthesis, cytotoxicity, and molecular docking studies of novel thiazolyl-hydrazone derivatives as histone lysine acetyl-transferase inhibitors and apoptosis inducers. Arch Pharm (Weinheim), 355(7), e2200076. https://doi.org/10.1002/ardp.202200076
Alsamri, H., Hasasna, H. E., Baby, B., Alneyadi, A., Dhaheri, Y. A., Ayoub, M. A., Eid, A. H., Vijayan, R., & Iratni, R. (2021). Carnosol is a novel inhibitor of p300 acetyltransferase in breast cancer. Frontiers in Oncology, 11, 664403. https://doi.org/10.3389/fonc.2021.664403
Antonijoan, R. M., Ferrero-Cafiero, J. M., Coimbra, J., Puntes, M., Martínez-Colomer, J., Arévalo, M. I., Mascaró, C., Molinero, C., Buesa, C., & Maes, T. (2021). First-in-human randomized trial to assess safety, tolerability, pharmacokinetics and pharmacodynamics of the KDM1A inhibitor Vafidemstat. CNS Drugs, 35(3), 331-344. https://doi.org/10.1007/s40263-021-00797-x
Arif, M., Vedamurthy, B. M., Choudhari, R., Ostwal, Y. B., Mantelingu, K., Kodaganur, G. S., & Kundu, T. K. (2010). Nitric oxide-mediated histone hyperacetylation in oral cancer: Target for a water-soluble HAT inhibitor, CTK7A. Chemistry & Biology, 17(8), 903-913. https://doi.org/10.1016/j.chembiol.2010.06.014
Arif, M., Pradhan, S. K., Thanuja, G. R., Vedamurthy, B. M., Agrawal, S., Dasgupta, D., & Kundu, T. K. (2009). Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. Journal of Medicinal Chemistry, 52(2), 267-277. https://doi.org/10.1021/jm800657z
Baell, J. B., & Miao, W. (2016). Histone acetyltransferase inhibitors: Where art thou? Future Medicinal Chemistry, 8(13), 1525-1528. https://doi.org/10.4155/fmc-2016-0151
Baer, M. R., Kogan, A. A., Bentzen, S. M., Mi, T., Lapidus, R. G., Duong, V. H., Emadi, A., Niyongere, S., O'Connell, C. L., Youngblood, B. A., Baylin, S. B., & Rassool, F. V. (2022). Phase I clinical trial of DNA methyltransferase inhibitor decitabine and PARP inhibitor Talazoparib combination therapy in relapsed/refractory acute myeloid leukemia. Clinical Cancer Research, 28(7), 1313-1322. https://doi.org/10.1158/1078-0432.CCR-21-3729
Bandyopadhyay, K., Banères, J. L., Martin, A., Blonski, C., Parello, J., & Gjerset, R. A. (2009). Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer-specific chemo- and radiosensitization. Cell Cycle, 8(17), 2779-2788. https://doi.org/10.4161/cc.8.17.9416
Banerjee, N. S., Moore, D. W., Broker, T. R., & Chow, L. T. (2018). Vorinostat, a pan-HDAC inhibitor, abrogates productive HPV-18 DNA amplification. Proceedings of the National Academy of Sciences of the United States of America, 115(47), E11138-E11147. https://doi.org/10.1073/pnas.1801156115
Barazeghi, E., Hellman, P., Norlén, O., Westin, G., & Stalberg, P. (2021). EZH2 presents a therapeutic target for neuroendocrine tumors of the small intestine. Scientific Reports, 11(1), 22733. https://doi.org/10.1038/s41598-021-02181-7
Bass, A. K. A., El-Zoghbi, M. S., Nageeb, E. M., Mohamed, M. F. A., Badr, M., & Abuo-Rahma, G. E. A. (2021). Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. European Journal of Medicinal Chemistry, 209, 112904. https://doi.org/10.1016/j.ejmech.2020.112904
Boumber, Y., Younes, A., & Garcia-Manero, G. (2011). Mocetinostat (MGCD0103): A review of an isotype-specific histone deacetylase inhibitor. Expert OpinInvestig Drugs., 20(6), 823-829. https://doi.org/10.1517/13543784.2011.577737
Candelaria, M., de la Cruz-Hernandez, E., Taja-Chayeb, L., Perez-Cardenas, E., Trejo-Becerril, C., Gonzalez-Fierro, A., Chavez-Blanco, A., Soto-Reyes, E., Dominguez, G., Trujillo, J. E., Diaz-Chavez, J., & Duenas-Gonzalez, A. (2012). DNA methylation-independent reversion of gemcitabine resistance by hydralazine in cervical cancer cells. PLoS One, 7(3), e29181. https://doi.org/10.1371/journal.pone.0029181
Carradori, S., Rotili, D., De Monte, C., Lenoci, A., D'Ascenzio, M., Rodriguez, V., Filetici, P., Miceli, M., Nebbioso, A., Altucci, L., Secci, D., & Mai, A. (2014). Evaluation of a large library of (thiazol-2-yl)hydrazones and analogues as histone acetyltransferase inhibitors: Enzyme and cellular studies. European Journal of Medicinal Chemistry, 80, 569-578. https://doi.org/10.1016/j.ejmech.2014.04.042
Castillo-Aguilera, O., Depreux, P., Halby, L., Arimondo, P. B., & Goossens, L. (2017). DNA methylation targeting. The DNMT/HMT Crosstalk Challenge. Biomolecules., 7(1), 3. https://doi.org/10.3390/biom7010003
Cebrat, M., Kim, C. M., Thompson, P. R., Daugherty, M., & Cole, P. A. (2012). Synthesis and analysis of potential prodrugs of coenzyme a analogues for the inhibition of the histone acetyltransferase p300. Bioorganic & Medicinal Chemistry, x11(15), 3307-3313. https://doi.org/10.1016/s0968-0896(03)00265-7
Chaudhary, A. (2021). Recent development in the synthesis of heterocycles by 2-naphthol-based multicomponent reactions. Molecular Diversity, 25(2), 1211-1245. https://doi.org/10.1007/s11030-020-10076-4
Chen, W. W., & Xu, M. H. (2017). Recent advances in rhodium-catalyzed asymmetric synthesis of heterocycles. Organic & Biomolecular Chemistry, 15(5), 1029-1050. https://doi.org/10.1039/c6ob02021f
Chen, Y.-T., Zhu, F., Lin, W.-R., Ying, R.-B., Yang, Y.-P., & Zeng, L.-H. (2016). The novel EZH2 inhibitor, GSK126, suppresses cell migration and angiogenesis via down-regulating VEGF-A. Cancer Chemotherapy and Pharmacology, 77(4), 757-765. https://doi.org/10.1007/s00280-016-2990-1
Cheng, Y., He, C., Wang, M., Ma, X., Mo, F., Yang, S., Han, J., & Wei, X. (2019). Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. signal transduction and targeted therapy, 17(4), 62. https://doi.org/10.1038/s41392-019-0095-0
Chifotides, H. T., Bose, P., & Verstovsek, S. (2020). Givinostat: An emerging treatment for polycythemia vera. Expert OpinInvestig Drugs., 29(6), 525-536.
Choi, K. C., Park, S., Lim, B. J., Seong, A. R., Lee, Y. H., Shiota, M., Yokomizo, A., Naito, S., Na, Y., & Yoon, H. G. (2011). Procyanidin B3, an inhibitor of histone acetyltransferase, enhances the action of antagonist for prostate cancer cells via inhibition of p300-dependent acetylation of androgen receptor. The Biochemical Journal, 433(1), 235-244. https://doi.org/10.1042/BJ20100980
Citron, F., & Fabris, L. (2020). Targeting epigenetic dependencies in solid tumors: Evolutionary landscape beyond germ layers origin. Cancers (Basel)., 12(3), 682. https://doi.org/10.3390/cancers12030682
Coffey, K., Blackburn, T. J., Cook, S., Golding, B. T., Griffin, R. J., Hardcastle, I. R., Hewitt, L., Huberman, K., McNeill, H. V., Newell, D. R., Roche, C., Ryan-Munden, C. A., Watson, A., & Robson, C. N. (2012). Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS One, 7(10), e45539. https://doi.org/10.1371/journal.pone.0045539
Crabb, S. J., Danson, S., Catto, J. W. F., Hussain, S., Chan, D., Dunkley, D., Downs, N., Marwood, E., Day, L., Saunders, G., Light, M., Whitehead, A., Ellis, D., Sarwar, N., Enting, D., Birtle, A., Johnson, B., Huddart, R., & Griffiths, G. (2021). Phase I trial of DNA methyltransferase inhibitor Guadecitabine combined with cisplatin and gemcitabine for solid malignancies including urothelial carcinoma (SPIRE). Clinical Cancer Research, 27(7), 1882-1892. https://doi.org/10.1158/1078-0432.CCR-20-3946
Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: From mechanism to therapy. Cell, 150(1), 12-27. https://doi.org/10.1016/j.cell.2012.06.013
Deb, S., Phukan, B. C., Mazumder, M. K., Dutta, A., Paul, R., Bhattacharya, P., Sandhir, R., & Borah, A. (2019). Garcinol, a multifaceted sword for the treatment of Parkinson's disease. Neurochemistry International, 128, 50-57. https://doi.org/10.1016/j.neuint.2019.04.004
Dekker, F. J., & Haisma, H. J. (2009). Histone acetyl transferases as emerging drug targets. Drug Discovery Today, 14(19-20), 942-948. https://doi.org/10.1016/j.drudis.2009.06.008
Dhuguru, J., & Ghoneim, O. A. (2022). Quinazoline based HDAC dual inhibitors as potential anti-cancer agents. Molecules, 27(7), 2294. https://doi.org/10.3390/molecules27072294
Ding, H., Pei, Y., Li, Y., Xu, W., Mei, L., Hou, Z., Guang, Y., Cao, L., Li, P., Cao, H., Bian, J., Chen, K., Luo, C., Zhou, B., Zhang, T., Li, Z., & Yang, Y. (2021). Design, synthesis and biological evaluation of a novel spiro oxazolidinedione as potent p300/CBP HAT inhibitor for the treatment of ovarian cancer. Bioorganic & Medicinal Chemistry, 52, 116512. https://doi.org/10.1016/j.bmc.2021.116512
Furdas, S. D., Shekfeh, S., Bissinger, E. M., Wagner, J. M., Schlimme, S., Valkov, V., Hendzel, M., Jung, M., & Sippl, W. (2011). Synthesis and biological testing of novel pyridoisothiazolones as histone acetyltransferase inhibitors. Bioorganic & Medicinal Chemistry, 19(12), 3678-3689. https://doi.org/10.1016/j.bmc.2011.01.063
Gao, C., Bourke, E., Scobie, M., Famme, M. A., Koolmeister, T., Helleday, T., Eriksson, L. A., Lowndes, N. F., & Brown, J. A. (2014). Rational design and validation of a Tip60 histone acetyltransferase inhibitor. Scientific Reports, 4, 5372. https://doi.org/10.1038/srep05372
Garcia-Martinez, L., Zhang, Y., Nakata, Y., Chan, H. L., & Morey, L. (2021). Epigenetic mechanisms in breast cancer therapy and resistance. Nature Communications, 12(1), 1786. https://doi.org/10.1038/s41467-021-22024-3
Ghasemi, S. (2020). Cancer's epigenetic drugs: Where are they in the cancer medicines? The Pharmacogenomics Journal, 3, 367-379. https://doi.org/10.1038/s41397-019-0138-5
Gu, L., Wang, Q., & Sun, Q. Y. (2010). Histone modifications during mammalian oocyte maturation: Dynamics, regulation and functions. Cell Cycle, 9(10), 1942-1950. https://doi.org/10.4161/cc.s9.10.11599
Guha, M., Srinivasan, S., Guja, K., Mejia, E., Garcia-Diaz, M., Johnson, F. B., Ruthel, G., Kaufman, B. A., Rappaport, E. F., Glineburg, M. R., Fang, J. K., Klein-Szanto, A. J., Klein, S. A., Nakagawa, H., Basha, J., Kundu, T., & Avadhani, N. G. (2016). HnRNPA2 is a novel histone acetyltransferase that mediates mitochondrial stress-induced nuclear gene expression. Cell Discovery, 2, 16045. https://doi.org/10.1038/celldisc.2016.45
He, S., Gao, F., Ma, J., Ma, H., Dong, G., & Sheng, C. (2021). Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer. Angewandte Chemie (International Ed. in English), 60(43), 23299-23305. https://doi.org/10.1002/anie.202107347
He, Z. X., Wei, B. F., Zhang, X., Gong, Y. P., Ma, L. Y., & Zhao, W. (2021). Current development of CBP/p300 inhibitors in the last decade. European Journal of Medicinal Chemistry, 209, 112861. https://doi.org/10.1016/j.ejmech.2020.112861
Hegde, M., & Joshi, M. B. (2021). Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. Journal of Cancer Research and Clinical Oncology, 147(4), 937-971. https://doi.org/10.1007/s00432-021-03519-4
Herav, M. M., & Zadsirjan, V. (2020). Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 10, 44247-44311. https://doi.org/10.1039/D0RA09198G
Hoffman, M. M., Zylla, J. S., Bhattacharya, S., Calar, K., Hartman, T. W., Bhardwaj, R. D., Miskimins, W. K., de la Puente, P., Gnimpieba, E. Z., & Messerli, S. M. (2020). Analysis of dual class I histone deacetylase and lysine demethylase inhibitor Domatinostat (4SC-202) on growth and cellular and genomic landscape of atypical teratoid/rhabdoid. Cancers (Basel)., 12(3), 756. https://doi.org/10.3390/cancers12030756
Hoy, S. M. (2020). Tazemetostat: First Approval. Drugs, 80(5), 513-521. https://doi.org/10.1007/s40265-020-01288-x
Hu, C., Liu, X., Zeng, Y., Liu, J., & Wu, F. (2021). DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: Mechanism and clinical application. Clinical Epigenetics, 13(1), 166. https://doi.org/10.1186/s13148-021-01154-x
Huang, M., Huang, J., Zheng, Y., & Sun, Q. (2019). Histone acetyltransferase inhibitors: An overview in synthesis, structure-activity relationship and molecular mechanism. European Journal of Medicinal Chemistry, 178, 259-286. https://doi.org/10.1016/j.ejmech.2019.05.078
Huhn, A. J., Gardberg, A. S., Poy, F., Brucelle, F., Vivat, V., Cantone, N., Patel, G., Patel, C., Cummings, R., Sims, R., Levell, J., Audia, J. E., Bommi-Reddy, A., & Wilson, J. E. (2020). Early drug-discovery efforts towards the identification of EP300/CBP histone acetyltransferase (HAT) inhibitors. ChemMedChem, 15(11), 955-960. https://doi.org/10.1002/cmdc.202000007
Huigens, R. W., 3rd., Brummel, B. R., Tenneti, S., Garrison, A. T., & Xiao, T. (2022). Pyrazine and phenazine heterocycles: Platforms for Total synthesis and drug discovery. Molecules, 27(3), 1112. https://doi.org/10.3390/molecules27031112
Jeelan Basha, N., & Basavarajaiah, S. M. (2022). Anticancer potential of bioactive molecule luteolin and its analogs: An update. Polycyclic Aromatic Compounds., 1-19. https://doi.org/10.1080/10406638.2022.2080728. Online ahead of print.
Jeelan Basha, N., Basavarajaiah, S. M., & Shyamsunder, K. (2022). Therapeutic potential of pyrrole and pyrrolidine analogs: An update. Molecular Diversity, 1-23. https://doi.org/10.1007/s11030-022-10387-8. Online ahead of print.
Jeelan Basha, N., & Goudgaon, N. M. (2021). A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. Journal of Molecular Structure, 1246, 131168. https://doi.org/10.1016/j.molstruc.2021.131168
Ji, Z., Clark, R. F., Bhat, V., Matthew Hansen, T., Lasko, L. M., Bromberg, K. D., Manaves, V., Algire, M., Martin, R., Qiu, W., Torrent, M., Jakob, C. G., Liu, H., Cole, P. A., Marmorstein, R., Kesicki, E. A., Lai, A., & Michaelides, M. R. (2021). Discovery of spirohydantoins as selective, orally bioavailable inhibitors of p300/CBP histone acetyltransferases. Bioorganic & Medicinal Chemistry Letters, 39, 127854. https://doi.org/10.1016/j.bmcl.2021.127854
Jones, P. A., Ohtani, H., Chakravarthy, A., & De Carvalho, D. D. (2019). Epigenetic therapy in immune-oncology. Nature Reviews. Cancer, 19(3), 151-161. https://doi.org/10.1038/s41568-019-0109-9
Kanada, R., Suzuki, T., Murata, T., Miyazaki, M., Shimada, T., Kuroha, M., Minami, M., Higuchi, S., Tominaga, Y., & Naito, H. (2021). 4-Pyridone-3-carboxylic acid as a benzoic acid bioisostere: Design, synthesis, and evaluation of EP300/CBP histone acetyltransferase inhibitors. Bioorganic & Medicinal Chemistry Letters, 51, 128358. https://doi.org/10.1016/j.bmcl.2021.128358
Kausar, S., Abbas, M. N., & Cui, H. (2021). A review on the DNA methyltransferase family of insects: Aspect and prospects. International Journal of Biological Macromolecules, 186, 289-302.
Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., & Jonnalagadda, S. B. (2020). A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 25(8), 1909. https://doi.org/10.3390/molecules25081909
Khan, S., Komarya, S. K., & Jena, G. (2017). Phenylbutyrate and β-cell function: Contribution of histone deacetylases and ER stress inhibition. Epigenomics, 9(5), 711-720. https://doi.org/10.2217/epi-2016-0160
Kiany, S., Harrison, D., & Gordon, N. (2020). The histone deacetylase inhibitor Entinostat/Syndax 275 in osteosarcoma. Advances in Experimental Medicine and Biology, 1257, 75-83. https://doi.org/10.1007/978-3-030-43032-0_7
Kim, A., & Yun, J. M. (2017). Combination treatments with luteolin and Fisetin enhance anti-inflammatory effects in high glucose-treated THP-1 cells through histone acetyltransferase/histone deacetylase regulation. Journal of Medicinal Food, 20(8), 782-789. https://doi.org/10.1089/jmf.2017.3968
Kopytko, P., Piotrowska, K., Janisiak, J., & Tarnowski, M. (2021). Garcinol-a natural histone acetyltransferase inhibitor and new anti-cancer epigenetic drug. International Journal of Molecular Sciences, 22(6), 2828. https://doi.org/10.3390/ijms22062828
Kumar, A., Bhowmick, K., Vikramdeo, K. S., Mondal, N., Subbarao, N., & Dhar, S. K. (2017). Designing novel inhibitors against histone acetyltransferase (HAT: GCN5) of plasmodium falciparum. European Journal of Medicinal Chemistry, 138, 26-37. https://doi.org/10.1016/j.ejmech.2017.06.009
Lang, D. K., Kaur, R., Arora, R., Saini, B., & Arora, S. (2020). Nitrogen-containing heterocycles as anticancer agents: An overview. Anti-Cancer Agents in Medicinal Chemistry, 20(18), 2150-2168. https://doi.org/10.2174/1871520620666200705214917
Lasko, L. M., Jakob, C. G., Edalji, R. P., Qiu, W., Montgomery, D., Digiammarino, E. L., Hansen, T. M., Risi, R. M., Frey, R., Manaves, V., Shaw, B., Algire, M., Hessler, P., Lam, L. T., Uziel, T., Faivre, E., Ferguson, D., Buchanan, F. G., Martin, R. L., … Bromberg, K. D. (2017). Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature, 550(7674), 128-132. https://doi.org/10.1038/nature24028
Lenoci, A., Tomassi, S., Conte, M., Benedetti, R., Rodriguez, V., Carradori, S., Secci, D., Castellano, S., Sbardella, G., Filetici, P., Novellino, E., Altucci, L., Rotili, D., & Mai, A. (2014). Quinoline-based p300 histone acetyltransferase inhibitors with pro-apoptotic activity in human leukemia U937 cells. ChemMedChem, 9(3), 542-548. https://doi.org/10.1002/cmdc.201300536
Li, F., Shanmugam, M. K., Chen, L., Chatterjee, S., Basha, J., Kumar, A. P., Kundu, T. K., & Sethi, G. (2013). Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev Res (Phila), 6(8), 843-854. https://doi.org/10.1158/1940-6207.CAPR-13-0070
Li, P., Ge, J., & Li, H. (2020). Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nature Reviews. Cardiology, 17(2), 96-115. https://doi.org/10.1038/s41569-019-0235-9
Li, X., Li, C., & Sun, G. (2016). Histone acetylation and its modifiers in the pathogenesis of diabetic nephropathy. Journal Diabetes Research, 2016, 4065382. https://doi.org/10.1155/2016/4065382
Li, X., Zhang, J., Xie, Y., Jiang, Y., Yingjie, Z., & Xu, W. (2014). Progress of HDAC inhibitor panobinostat in the treatment of cancer. Current Drug Targets, 15(6), 622-634. https://doi.org/10.2174/1389450115666140306152642
Liu, R., Zhang, Z., Yang, H., Zhou, K., Geng, M., Zhou, W., Zhang, M., Huang, X., & Li, Y. (2019). Design, synthesis, and biological evaluation of a new class of histone acetyltransferase p300 inhibitors. European Journal of Medicinal Chemistry, 180, 171-190. https://doi.org/10.1016/j.ejmech.2019.07.026
Lobo, J., Guimarães-Teixeira, C., Barros-Silva, D., Miranda-Gonçalves, V., Camilo, V., Guimarães, R., Cantante, M., Braga, I., Maurício, J., Oing, C., Honecker, F., Nettersheim, D., Looijenga, L. H., Henrique, R., & Jerónimo, C. (2020). Efficacy of HDAC inhibitors Belinostat and Panobinostat against cisplatin-sensitive and cisplatin-resistant testicular germ cell tumors. Cancers (Basel)., 12(10), 2903. https://doi.org/10.3390/cancers12102903
Lu, W., Xiong, H., Chen, Y., Wang, C., Zhang, H., Xu, P., Han, J., Xiao, S., Ding, H., Chen, Z., Lu, T., Wang, J., Zhang, Y., Yue, L., Liu, Y. C., Zhang, C., Yang, Y., Jiang, H., Chen, K., … Luo, C. (2018). Discovery and biological evaluation of thiobarbituric derivatives as potent p300/CBP inhibitors. Bioorganic & Medicinal Chemistry, 26(20), 5397-5407.
Lyko, F. (2018). The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nature Reviews. Genetics, 19(2), 81-92. https://doi.org/10.1038/nrg.2017.80
Macchia, P. E., Nettore, I. C., Franchini, F., Santana-Viera, L., & Ungaro, P. (2021). Epigenetic regulation of adipogenesis by histone-modifying enzymes. Epigenomics, 3, 235-251. https://doi.org/10.2217/epi-2020-0304
Mantela, M., Simserides, C., & Di Felice, R. (2021). LCAO electronic structure of nucleic acid bases and other heterocycles and transfer integrals in B-DNA. Including Structural Variability. Materials (Basel)., 14(17), 4930. https://doi.org/10.3390/ma14174930
Mantelingu, K., Reddy, B. A., Swaminathan, V., Kishore, A. H., Siddappa, N. B., Kumar, G. V., Nagashankar, G., Natesh, N., Roy, S., Sadhale, P. P., Ranga, U., Narayana, C., & Kundu, T. K. (2007). Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chemistry & Biology, 14(6), 645-657. https://doi.org/10.1016/j.chembiol.2007.04.011
Manzo, F., Tambaro, F. P., Mai, A., & Altucci, L. (2009). Histone acetyltransferase inhibitors and preclinical studies. Expert Opinion on Therapeutic Patents, 19(6), 761-774. https://doi.org/10.1517/13543770902895727
Marcos-Villar, L., & Nieto, A. (2019). The DOT1L inhibitor Pinometostat decreases the host-response against infections: Considerations about its use in human therapy. Scientific Reports, 9, 16862. https://doi.org/10.1038/s41598-019-53239-6
Marmorstein, R., & Zhou, M. M. (2014). Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harbor perspectives in biology, 6(7), a018762. https://doi.org/10.1101/cshperspect.a018762
Mathada, B. S., & Somappa, S. B. (2022). An insight into the recent developments in anti-infective potential of indole and associated hybrids. J. Mol. Struc., 1261, 132808. https://doi.org/10.1016/j.molstruc.2022.132808
Michaelides, M. R., Kluge, A., Patane, M., Van Drie, J. H., Wang, C., Hansen, T. M., Risi, R. M., Mantei, R., Hertel, C., Karukurichi, K., Nesterov, A., McElligott, D., de Vries, P., Langston, J. W., Cole, P. A., Marmorstein, R., Liu, H., Lasko, L., Bromberg, K. D., … Kesicki, E. A. (2017). Discovery of Spiro Oxazolidinediones as selective, orally bioavailable inhibitors of p300/CBP histone acetyltransferases. ACS Medicinal Chemistry Letters, 9(1), 28-33. https://doi.org/10.1021/acsmedchemlett.7b00395
Miranda Furtado, C. L., Dos Santos Luciano, M. C., Silva Santos, R. D., Furtado, G. P., Moraes, M. O., & Pessoa, C. (2019). Epidrugs: Targeting epigenetic marks in cancer treatment. Epigenetics, 14(12), 1164-1176. https://doi.org/10.1080/15592294.2019.1640546
Modak, R., Basha, J., Bharathy, N., Maity, K., Mizar, P., Bhat, A. V., Vasudevan, M., Rao, V. K., Kok, W. K., Natesh, N., Taneja, R., & Kundu, T. K. (2013). Probing p300/CBP associated factor (PCAF)-dependent pathways with a small molecule inhibitor. ACS Chemical Biology, 8(6), 1311-1323. https://doi.org/10.1021/cb4000597
Morgan, A. E., Davies, T. J., & Mc Auley, M. T. (2018). The role of DNA methylation in ageing and cancer. The Proceedings of the Nutrition Society, 77(4), 412-422. https://doi.org/10.1017/S0029665118000150
Morgan, M. A. J., & Shilatifard, A. (2020). Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nature Genetics, 52(12), 1271-1281. https://doi.org/10.1038/s41588-020-00736-4
Nagesh, G. Y., Javeed, M., Basha, J. N., Prashantha, K., Nithin, R., Thanushree, P. R., Vivekanand, S., Gowda, S. S., & Basavarajaiah, S. M. (2022). Design, spectral analysis, DFT calculations, antimicrobial, anti-TB, antioxidant activity and molecular docking studies of novel bis-benzoxazines with cytochrome c peroxidase. Journal of Molecular Structure, 1262(15), 132977. https://doi.org/10.1016/j.molstruc.2022.132977
Nakamura, K., Nakabayashi, K., Htet, A. K., Aizawa, K., Hori, N., Yamauchi, J., Hata, K., & Tanoue, A. (2015). DNA methyltransferase inhibitor zebularine induces human cholangiocarcinoma cell death through alteration of DNA methylation status. PLoS One, 10(3), e0120545. https://doi.org/10.1371/journal.pone.0120545
Ngo, L., Brown, T., & Zheng, Y. G. (2019). Bisubstrate inhibitors to target histone acetyltransferase 1. Chemical Biology & Drug Design, 93(5), 865-873. https://doi.org/10.1111/cbdd.13476
Nie, S., Wu, F., Wu, J., Li, X., Zhou, C., Yao, Y., & Song, Y. (2022). Structure-activity relationship and antitumor activity of 1,4-pyrazine-containing inhibitors of histone acetyltransferases P300/CBP. European Journal of Medicinal Chemistry, 237, 114407. https://doi.org/10.1016/j.ejmech.2022.114407
Ono, H., Kato, T., Murase, Y., Nakamura, Y., Ishikawa, Y., Watanabe, S., Akahoshi, K., Ogura, T., Ogawa, K., Ban, D., Kudo, A., Akiyama, Y., Tanaka, S., Ito, H., & Tanabe, M. (2021). C646 inhibits G2/M cell cycle-related proteins and potentiates anti-tumor effects in pancreatic cancer. Scientific Reports, 11(1), 10078. https://doi.org/10.1038/s41598-021-89530-8
Ozyerli-Goknar, E., & Bagci-Onder, T. (2021). Epigenetic deregulation of apoptosis in cancers. Cancers (Basel)., 13(13), 3210. https://doi.org/10.3390/cancers13133210
Pan, Y., Liu, G., Zhou, F., Su, B., & Li, Y. (2018). DNA methylation profiles in cancer diagnosis and therapeutics. Clinical and Experimental Medicine, 18(1), 1-14. https://doi.org/10.1007/s10238-017-0467-0
Parthun, M. R. (2012). Histone acetyltransferase 1: More than just an enzyme? Biochimica et Biophysica Acta, 1819(3-4), 256-263. https://doi.org/10.1016/j.bbagrm.2011.07.006
Pathania, S., Narang, R. K., & Rawal, R. K. (2019). Role of Sulphur-heterocycles in medicinal chemistry: An update. European Journal of Medicinal Chemistry, 180, 486-508. https://doi.org/10.1016/j.ejmech.2019.07.043
Pojani, E., & Barlocco, D. (2021). Romidepsin (FK228), a histone deacetylase inhibitor and its analogues in cancer chemotherapy. Current Medicinal Chemistry, 28(7), 1290-1303. https://doi.org/10.2174/0929867327666200203113926
Poziello, A., Nebbioso, A., Stunnenberg, H. G., Martens, J. H. A., Carafa, V., & Altucci, L. (2021). Recent insights into histone Acetyltransferase-1: Biological function and involvement in pathogenesis. Epigenetics, 16(8), 838-850. https://doi.org/10.1080/15592294.2020.1827723
Qiu, X., Zhu, L., Wang, H., Tan, Y., Yang, Z., Yang, L., & Wan, L. (2021). From natural products to HDAC inhibitors: An overview of drug discovery and design strategy. Bioorganic & Medicinal Chemistry, 52, 116510. https://doi.org/10.1016/j.bmc.2021
Ren, Q., & Gao, W. (2021). Current status in the discovery of dual BET/HDAC inhibitors. Bioorganic & Medicinal Chemistry Letters, 31, 127671. https://doi.org/10.1016/j.bmcl.2020.127671
Rodriguez, L. E., House, C. H., Smith, K. E., Roberts, M. R., & Callahan, M. P. (2019). Nitrogen heterocycles form peptide nucleic acid precursors in complex prebiotic mixtures. Scientific Reports, 9(1), 9281. https://doi.org/10.1038/s41598-019-45310-z
Rugo, H. S., Jacobs, I., Sharma, S., Scappaticci, F., Paul, T. A., Jensen-Pergakes, K., & Malouf, G. G. (2020). The promise for histone methyltransferase inhibitors for epigenetic therapy in clinical oncology: A narrative review. Advances in Therapy, 37(7), 3059-3082. https://doi.org/10.1007/s12325-020-01379-x
Sabnis, R. W. (2021). Novel histone acetyltransferase (HAT) inhibitors for treating diseases. ACS Medicinal Chemistry Letters, 12(8), 1198-1199. https://doi.org/10.1021/acsmedchemlett.1c00337
Seong, A. R., Yoo, J. Y., Choi, K., Lee, M. H., Lee, Y. H., Lee, J., Jun, W., Kim, S., & Yoon, H. G. (2011). Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A cells. Biochemical and Biophysical Research Communications, 410(3), 581-586. https://doi.org/10.1016/j.bbrc.2011.06.029
Shanmugam, M. K., Dharmarajan, A., Warrier, S., Bishayee, A., Kumar, A. P., Sethi, G., & Ahn, K. S. (2021). Role of histone acetyltransferase inhibitors in cancer therapy. Advances in Protein Chemistry and Structural Biology, 125, 149-191. https://doi.org/10.1016/bs.apcsb.2020.08.002
Sharma, D., Kumar, M., & Das, P. (2021). Application of cyclohexane-1,3-diones for six-membered oxygen-containing heterocycles synthesis. Bioorganic Chemistry, 107, 104559. https://doi.org/10.1016/j.bioorg.2020.104559
Shim, J. I., Ryu, J. Y., Jeong, S. Y., Cho, Y. J., Choi, J. J., Hwang, J. R., Choi, J. Y., Sa, J. K., & Lee, J. W. (2022). Combination effect of poly (ADP-ribose) polymerase inhibitor and DNA demethylating agents for treatment of epithelial ovarian cancer. Gynecologic Oncology, 165, 270-280. https://doi.org/10.1016/j.ygyno.2022.03.005
Shvedunova, M., & Akhtar, A. (2022). Modulation of cellular processes by histone and non-histone protein acetylation. Nature Reviews. Molecular Cell Biology, 23(5), 329-349. https://doi.org/10.1038/s41580-021-00441-y
Slaughter, M. J., Shanle, E. K., Khan, A., Chua, K. F., Hong, T., Boxer, L. D., Allis, C. D., Josefowicz, S. Z., Garcia, B. A., Rothbart, S. B., Strahl, B. D., & Davis, I. J. (2021). HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Reports, 34(3), 108638. https://doi.org/10.1016/j.celrep.2020.108638
Sohtome, Y., & Sodeoka, M. (2018). Development of chaetocin and S-adenosylmethionine analogues as tools for studying protein methylation. Chemical Record, 18(12), 1660-1671. https://doi.org/10.1002/tcr.201800118
Srivastava, S., Bhowmick, K., Chatterjee, S., Basha, J., Kundu, T. K., & Dhar, S. K. (2014). Histone H3K9 acetylation level modulates gene expression and may affect parasite growth in human malaria parasite plasmodium falciparum. The FEBS Journal, 281(23), 5265-5278. https://doi.org/10.1111/febs.13067
Stimson, L., Rowlands, M. G., Newbatt, Y. M., Smith, N. F., Raynaud, F. I., Rogers, P., Bavetsias, V., Gorsuch, S., Jarman, M., Bannister, A., Kouzarides, T., McDonald, E., Workman, P., & Aherne, G. W. (2005). Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Molecular Cancer Therapeutics, 4(10), 1521-1532. https://doi.org/10.1158/1535-7163.MCT-05-0135
Sun, L., Zhang, H., & Gao, P. (2021). Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein & Cell, 13, 877-919. https://doi.org/10.1007/s13238-021-00846-7
Tan, Z., Li, T., Lei, H., & Zhai, X. (2021). An update on allosteric modulators as a promising strategy targeting histone methyltransferase. Pharmacological Research, 172, 105865. https://doi.org/10.1016/j.phrs.2021.105865
Tasneem, S., Alam, M. M., Amir, M., Akhter, M., Parvez, S., Verma, G., Nainwal, L. M., Equbal, A., Anwer, T., & Shaquiquzzaman, M. (2021). Heterocyclic moieties as HDAC inhibitors: Role in cancer therapeutic. Mini Reviews in Medicinal Chemistry, 22, 1648-1706. https://doi.org/10.2174/1389557519666211221144013
Tohyama, S., Tomura, A., Ikeda, N., Hatano, M., Odanaka, J., Kubota, Y., Umekita, M., Igarashi, M., Sawa, R., & Morino, T. (2012). Discovery and characterization of NK13650s, naturally occurring p300-selective histone acetyltransferase inhibitors. The Journal of Organic Chemistry, 77(20), 9044-9052. https://doi.org/10.1021/jo301534b
Topper, M. J., Vaz, M., Marrone, K. A., Brahmer, J. R., & Baylin, S. B. (2020). The emerging role of epigenetic therapeutics in immuno-oncology. Nature Reviews. Clinical Oncology, 17(2), 75-90. https://doi.org/10.1038/s41571-019-0266-5
Trisciuoglio, D., & Rotili, D. (2019). Histone acetyltransferase enzymes: From biological implications to Most relevant inhibitors. In A. Mai (Ed.), Chemical epigenetics. Topics in medicinal chemistry (Vol. 33). Springer.
Tsusaka, T., Shimura, C., & Shinkai, Y. (2019). ATF7IP regulates SETDB1 nuclear localization and increases its ubiquitination. EMBO Reports, 20(12), e48297. https://doi.org/10.15252/embr.201948297
Van Wynsberghe, P. M., & Maine, E. M. (2013). Epigenetic control of germline development. Advances in Experimental Medicine and Biology, 757, 373-403. https://doi.org/10.1007/978-1-4614-4015-4_13
Vanhaecke, T., Papeleu, P., Elaut, G., & Rogiers, V. (2004). Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: Toxicological point of view. s, 11(12), 1629-1643. https://doi.org/10.2174/0929867043365099
Vatapalli, R., Sagar, V., Rodriguez, Y., Zhao, J. C., Unno, K., Pamarthy, S., Lysy, B., Anker, J., Han, H., Yoo, Y. A., Truica, M., Chalmers, Z. R., Giles, F., Yu, J., Chakravarti, D., Carneiro, B., & Abdulkadir, S. A. (2020). Histone methyltransferase DOT1L coordinates AR and MYC stability in prostate cancer. Nature Communications, 11, 4153. https://doi.org/10.1038/s41467-020-18013-7
Venturelli, S., Berger, A., Böcker, A., Busch, C., Weiland, T., Noor, S., Leischner, C., Schleicher, S., Mayer, M., Weiss, T. S., Bischoff, S. C., Lauer, U. M., & Bitzer, M. (2013). Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone [corrected] proteins in human-derived hepatoblastoma cells. PLoS One, 8(8), e73097. https://doi.org/10.1371/journal.pone.0073097
Wang, Y., Li, Y., Yue, M., Wang, J., Kumar, S., Wechsler-Reya, R. J., Zhang, Z., Ogawa, Y., Kellis, M., Duester, G., & Zhao, J. C. (2018). N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nature Neuroscience, 21(2), 195-206. https://doi.org/10.1038/s41593-017-0057-1
Wapenaar, H., & Dekker, F. J. (2016). Histone acetyltransferases: Challenges in targeting bi-substrate enzymes. Clinical Epigenetics, 8, 59. https://doi.org/10.1186/s13148-016-0225-2
Wu, F., Hua, Y., Kaochar, S., Nie, S., Lin, Y. L., Yao, Y., Wu, J., Wu, X., Fu, X., Schiff, R., Davis, C. M., Robertson, M., Ehli, E. A., Coarfa, C., Mitsiades, N., & Song, Y. (2020). Discovery, structure-activity relationship, and biological activity of histone-competitive inhibitors of histone acetyltransferases P300/CBP. Journal of Medicinal Chemistry, 63(9), 4716-4731. https://doi.org/10.1021/acs.jmedchem.9b02164
Wu, J., Xie, N., Wu, Z., Zhang, Y., & Zheng, Y. G. (2009). Bisubstrate inhibitors of the MYST HATs Esa1 and Tip60. Bioorganic & Medicinal Chemistry, 17(3), 1381-1386. https://doi.org/10.1016/j.bmc.2008.12.014
Wu, Y., Wang, L., Huang, Y., Chen, S., Wu, S., Dong, G., & Sheng, C. (2019). Nicotinamide Phosphoribosyltransferase (NAMPT) is a new target of antitumor agent Chidamide. ACS Medicinal Chemistry Letters, 11(1), 40-44. https://doi.org/10.1021/acsmedchemlett.9b00407
Xiong, H., Han, J., Wang, J., Lu, W., Wang, C., Chen, Y., Lian, F., Zhang, N., Liu, Y. C., Zhang, C., Ding, H., Jiang, H., Lu, W., Luo, C., & Zhou, B. (2018). Discovery of 1,8-acridinedione derivatives as novel GCN5 inhibitors via high throughput screening. European Journal of Medicinal Chemistry, 151, 740-751. https://doi.org/10.1016/j.ejmech.2018.02.005
Xiong, Y., Zhang, M., & Li, Y. (2020). Recent advances in the development of CBP/p300 bromodomain inhibitors. Current Medicinal Chemistry, 27(33), 5583-5598. https://doi.org/10.2174/0929867326666190731141055
Yang, C., Zhang, J., Ma, Y., Wu, C., Cui, W., & Wang, L. (2020). Histone methyltransferase and drug resistance in cancers. Journal of Experimental & Clinical Cancer Research, 39(1), 173. https://doi.org/10.1186/s13046-020-01682-V
Yang, G., Yuan, Y., Yuan, H., Wang, J., Yun, H., Geng, Y., Zhao, M., Li, L., Weng, Y., Liu, Z., Feng, J., Bu, Y., Liu, L., Wang, B., & Zhang, X. (2021). Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones and promotes tumorigenesis. EMBO Reports, 22(2), e50967. https://doi.org/10.15252/embr.202050967
Yang, Y., Zhang, R., Li, Z., Mei, L., Wan, S., Ding, H., Chen, Z., Xing, J., Feng, H., Han, J., Jiang, H., Zheng, M., Luo, C., & Zhou, B. (2020). Discovery of highly potent, selective, and orally efficacious p300/CBP histone acetyltransferases inhibitors. Journal of Medicinal Chemistry, 63(3), 1337-1360. https://doi.org/10.1021/acs.jmedchem.9b01721
Yang, Z., Zhang, Y., Chen, X., Li, W., Li, G., & Wu, Y. (2018). Total synthesis and evaluation of B-homo Palmatine and berberine derivatives as p300 histone acetyltransferase inhibitors. European Journal of Organic Chemistry, 28, 1041-1052. https://doi.org/10.1002/ejoc.201701693
Zhang, F. C., Sun, Z. Y., Liao, L. P., Zuo, Y., Zhang, D., Wang, J., Chen, Y. T., Xiao, S. H., Jiang, H., Lu, T., Xu, P., Yue, L. Y., Du, D. H., Zhang, H., Liu, C. P., & Luo, C. (2020). Discovery of novel CBP bromodomain inhibitors through TR-FRET-based high-throughput screening. Acta Pharmacologica Sinica, 41(2), 286-292. https://doi.org/10.1038/s41401-019-0256-2
Zhang, R., Wang, J., Zhao, L., Liu, S., Du, D., Ding, H., Chen, S., Yue, L., Liu, Y. C., Zhang, C., Liu, H., & Luo, C. (2018). Identification of novel inhibitors of histone acetyltransferase hMOF through high throughput screening. European Journal of Medicinal Chemistry, 157, 867-876. https://doi.org/10.1016/j.ejmech.2018.08.026
Zhang, S., Fujita, Y., Matsuzaki, R., & Yamashita, T. (2018). Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death & Disease, 9(5), 460. https://doi.org/10.1038/s41419-018-0543-8
Zhang, S., Liu, M., Yao, Y., Yu, B., & Liu, H. (2021). Targeting LSD1 for acute myeloid leukemia (AML) treatment. Pharmacological Research, 164, 105335. https://doi.org/10.1016/j.phrs.2020.105335
Zhang, Y., & Pike, A. (2021). Pyridones in drug discovery: Recent advances. Bioorganic & Medicinal Chemistry Letters, 38, 127849. https://doi.org/10.1016/j.bmcl.2021.127849
Zhao, M., Tao, Y., & Peng, G. H. (2020). The role of histone acetyltransferases and histone deacetylases in photoreceptor differentiation and degeneration. International Journal of Medical Sciences, 17(10), 1307-1314. https://doi.org/10.7150/ijms.43140
Zhou, Y., Peng, J., & Jiang, S. (2014). Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis. European Journal of Cell Biology, 93(4), 170-177. https://doi.org/10.1016/j.ejcb.2014.03.001
Zhou, Z., Li, H. Q., & Liu, F. (2018). DNA methyltransferase inhibitors and their therapeutic potential. Current Topics in Medicinal Chemistry, 18(28), 2448-2457. https://doi.org/10.2174/1568026619666181120150122

Auteurs

N Jeelan Basha (NJ)

Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India.

S M Basavarajaiah (SM)

P.G. Department of Chemistry, Vijaya College, Bengaluru, Karnataka, India.

Articles similaires

Humans Meals Time Factors Female Adult
Humans Male Female Health Knowledge, Attitudes, Practice Middle Aged
Humans Neoplasms Male Female Middle Aged
Humans Middle Aged Female Male Surveys and Questionnaires

Classifications MeSH