Enterococcus faecalis V583 cell membrane protein expression to alkaline stress.
Enterococcus faecalis
ICPL
alkaline pH
biofilm
continuous culture
membrane shaving
Journal
FEMS microbiology letters
ISSN: 1574-6968
Titre abrégé: FEMS Microbiol Lett
Pays: England
ID NLM: 7705721
Informations de publication
Date de publication:
20 09 2022
20 09 2022
Historique:
received:
05
04
2022
revised:
29
06
2022
accepted:
22
08
2022
pubmed:
1
9
2022
medline:
24
9
2022
entrez:
31
8
2022
Statut:
ppublish
Résumé
Enterococcus faecalis is able to adapt to alkaline conditions and is commonly recovered from teeth in which endodontic treatment has failed. The role that E. faecalis membrane proteins play in survival strategies to extreme alkaline conditions is unclear. We grew E. faecalis V583 in a chemostat at pH 8 and 11 at one-tenth the organism's relative maximum growth rate. Following membrane shaving, isotope-coding protein labels were added at the peptide level to samples and then combined. The relative proportion of membrane proteins were identified using LC-ESI mass spectrometry and MaxQuant analysis. Ratios of membrane proteins were log2 transformed, with proteins deviating by more than 1 SD of the mean considered to be up- or down-regulated. A total of six proteins were up-regulated in pH 11 including: EF0669 (polysaccharide biosynthesis family); EF1927 (glycerol uptake facilitator), and EF0114 (glycosyl hydrolase). A total of five proteins were down-regulated including: EF0108 (C4-dicarboxylate transporter); EF1838 (PTS system IIC component); EF0456 (PTS system IID component); and EF0022 (PTS mannose-specific IID component). In extreme alkaline conditions, the membrane proteins of E. faecalis seem to be involved in a shift of carbohydrate metabolism from the PTS system to glycerol, which supports the formation of a protective capsule protecting the cell.
Identifiants
pubmed: 36044998
pii: 6679558
doi: 10.1093/femsle/fnac082
pmc: PMC9491840
pii:
doi:
Substances chimiques
Bacterial Proteins
0
Dicarboxylic Acid Transporters
0
Membrane Proteins
0
Polysaccharides
0
Hydrolases
EC 3.-
Glycerol
PDC6A3C0OX
Mannose
PHA4727WTP
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of FEMS.
Références
Talanta. 2010 Feb 15;80(4):1496-502
pubmed: 20082807
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1574-9
pubmed: 11830672
J Proteomics. 2010 Sep 10;73(10):1986-2005
pubmed: 20601274
J Endod. 2022 Apr;48(4):542-547.e4
pubmed: 35257684
Proteomics. 2011 Oct;11(19):3935-41
pubmed: 21800426
Nat Rev Microbiol. 2010 Sep;8(9):623-33
pubmed: 20676145
Microbiology (Reading). 2009 Jun;155(Pt 6):1749-1757
pubmed: 19383684
BMC Bioinformatics. 2008 Mar 27;9:173
pubmed: 18371216
J Endod. 2002 Oct;28(10):689-93
pubmed: 12398165
Aust Endod J. 2014 Dec;40(3):101-10
pubmed: 25195495
Int Endod J. 1999 Sep;32(5):361-9
pubmed: 10551109
Anaerobe. 2007 Jun-Aug;13(3-4):146-52
pubmed: 17540586
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998 Jan;85(1):86-93
pubmed: 9474621
FEMS Microbiol Lett. 2002 Apr 9;209(2):141-8
pubmed: 12007797
J Endod. 2019 Mar;45(3):295-301.e2
pubmed: 30803536
Int Endod J. 2002 Mar;35(3):221-8
pubmed: 11985673
Arch Oral Biol. 2013 Nov;58(11):1667-76
pubmed: 24112733
Proteomics. 2010 Jun;10(12):2281-91
pubmed: 20391527
Antimicrob Agents Chemother. 2015 Jul;59(7):4094-105
pubmed: 25918141
Front Microbiol. 2015 Aug 07;6:795
pubmed: 26300863
BMC Microbiol. 2010 Aug 25;10:224
pubmed: 20738841
Oral Microbiol Immunol. 2007 Jun;22(3):169-74
pubmed: 17488442
Front Microbiol. 2016 Jan 11;6:1534
pubmed: 26793174
Mol Cell Proteomics. 2008 Aug;7(8):1460-8
pubmed: 18460691
Gene. 2020 Feb 5;726:144197
pubmed: 31669636
Infect Immun. 1979 Dec;26(3):861-9
pubmed: 43291
Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031
pubmed: 17158705
FEBS Open Bio. 2016 May 19;6(6):586-93
pubmed: 27419061