Using the canine microbiome to bridge translation of cancer immunotherapy from pre-clinical murine models to human clinical trials.
cancer
canines
comparative oncology
immunotherapy
microbiome
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2022
2022
Historique:
received:
30
06
2022
accepted:
26
07
2022
entrez:
29
8
2022
pubmed:
30
8
2022
medline:
31
8
2022
Statut:
epublish
Résumé
The microbiome has clearly been established as a cutting-edge field in tumor immunology and immunotherapy. Growing evidence supports the role of the microbiome in immune surveillance, self-tolerance, and response to immune checkpoint inhibitors such as anti PD-L1 and CTLA-4 blockade (1-6). Moreover, recent studies including those using fecal microbial transplantation (FMT) have demonstrated that response to checkpoint immunotherapies may be conferred or eliminated through gut microbiome modulation (7, 8). Consequently, studies evaluating microbiota-host immune and metabolic interactions remain an area of high impact research. While observations in murine models have highlighted the importance of the microbiome in response to therapy, we lack sufficient understanding of the exact mechanisms underlying these interactions. Furthermore, mouse and human gut microbiome composition may be too dissimilar for discovery of all relevant gut microbial biomarkers. Multiple cancers in dogs, including lymphoma, high grade gliomas, melanomas and osteosarcoma (OSA) closely resemble their human analogues, particularly in regard to metastasis, disease recurrence and response to treatment. Importantly, dogs with these spontaneous cancers also have intact immune systems, suggesting that microbiome analyses in these subjects may provide high yield information, especially in the setting of novel immunotherapy regimens which are currently expanding rapidly in canine comparative oncology (9, 10). Additionally, as onco-microbiotic therapies are developed to modify gut microbiomes for maximal responsiveness, large animal models with intact immune systems will be useful for trialing interventions and monitoring adverse events. Together, pre-clinical mechanistic studies and large animal trials can help fully unlock the potential of the microbiome as a diagnostic and therapeutic target in cancer.
Identifiants
pubmed: 36032113
doi: 10.3389/fimmu.2022.983344
pmc: PMC9412231
doi:
Substances chimiques
Immunologic Factors
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
983344Subventions
Organisme : NCI NIH HHS
ID : T32 CA251007
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA224166
Pays : United States
Organisme : NCI NIH HHS
ID : R03 CA252793
Pays : United States
Informations de copyright
Copyright © 2022 Kleber, Iranpur, Perry, Cruz, Razmara, Culp, Kent, Eisen, Rebhun and Canter.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Clin Cancer Res. 2007 Feb 1;13(3):902-11
pubmed: 17289884
J Clin Oncol. 2012 Jun 10;30(17):2046-54
pubmed: 22547592
J Anim Sci Technol. 2020 Mar;62(2):239-246
pubmed: 32292931
Science. 2019 Aug 2;365(6452):
pubmed: 31371577
J Immunother Cancer. 2017 Dec 19;5(1):98
pubmed: 29254507
Pigment Cell Melanoma Res. 2020 Jan;33(1):119-121
pubmed: 31449725
Immunity. 2015 Feb 17;42(2):344-355
pubmed: 25680274
Acta Vet Scand. 2017 Oct 24;59(1):71
pubmed: 29065898
Nat Rev Cancer. 2020 Dec;20(12):727-742
pubmed: 32934365
PLoS One. 2015 Jul 02;10(7):e0131468
pubmed: 26134411
Immunohorizons. 2022 Feb 24;6(2):184-190
pubmed: 35210292
Cell Host Microbe. 2013 Nov 13;14(5):559-70
pubmed: 24237701
Science. 2021 Feb 5;371(6529):602-609
pubmed: 33303685
Nat Commun. 2021 Aug 3;12(1):4670
pubmed: 34344882
Cancer Discov. 2018 Apr;8(4):403-416
pubmed: 29567829
Immunity. 2019 May 21;50(5):1276-1288.e5
pubmed: 30902637
Cell. 2019 Aug 8;178(4):795-806.e12
pubmed: 31398337
Appl Environ Microbiol. 2019 Aug 29;85(18):
pubmed: 31350316
Cancer Cell. 2020 Feb 10;37(2):243-257.e7
pubmed: 32049048
Front Microbiol. 2018 Jul 20;9:1598
pubmed: 30079054
Nat Rev Immunol. 2016 May 27;16(6):341-52
pubmed: 27231050
Gut Microbes. 2016 Sep 2;7(5):443-9
pubmed: 27472377
Vet Comp Oncol. 2018 Mar;16(1):E169-E175
pubmed: 29152844
Genome Med. 2021 Apr 16;13(1):60
pubmed: 33863341
N Engl J Med. 2010 Aug 19;363(8):711-23
pubmed: 20525992
Microbiome. 2018 Apr 19;6(1):72
pubmed: 29669589
Dis Model Mech. 2015 Jan;8(1):1-16
pubmed: 25561744
J Immunother Cancer. 2018 May 16;6(1):39
pubmed: 29769148
CA Cancer J Clin. 2022 Jan;72(1):7-33
pubmed: 35020204
Nature. 2012 Nov 8;491(7423):254-8
pubmed: 23034650
MAbs. 2021 Jan-Dec;13(1):2004638
pubmed: 34856888
Pharmacol Ther. 2018 Aug;188:80-96
pubmed: 29378221
Gut Microbes. 2020 Jul 3;11(4):635-654
pubmed: 31992112
Front Immunol. 2019 Sep 12;10:2174
pubmed: 31572384
Genome Res. 2015 Oct;25(10):1558-69
pubmed: 26260972
Nature. 2006 Dec 21;444(7122):1022-3
pubmed: 17183309
Nat Microbiol. 2016 Oct 03;1:16177
pubmed: 27694806
Nature. 2012 May 09;486(7402):222-7
pubmed: 22699611
Nature. 2014 Jan 23;505(7484):559-63
pubmed: 24336217
J Allergy Clin Immunol. 2011 Nov;128(5):948-55.e1-3
pubmed: 21872915
Sci Rep. 2021 Oct 21;11(1):20763
pubmed: 34675296
Cell. 2014 Nov 6;159(4):789-99
pubmed: 25417156
J Clin Oncol. 2005 Mar 1;23(7):1483-90
pubmed: 15735124
J Clin Oncol. 2019 Mar 1;37(7):559-569
pubmed: 30650045
Front Vet Sci. 2020 Jan 14;6:498
pubmed: 31993446
Cancer Res. 2018 Jul 1;78(13):3421-3431
pubmed: 29724721
J Natl Cancer Inst. 2013 Dec 18;105(24):1907-11
pubmed: 24316595
Mamm Genome. 2021 Aug;32(4):263-281
pubmed: 34159422
Neurogastroenterol Motil. 2012 Apr;24(4):305-11
pubmed: 22339979
Science. 2020 May 29;368(6494):973-980
pubmed: 32467386
JAMA Netw Open. 2020 Mar 2;3(3):e200423
pubmed: 32150268
J Am Assoc Lab Anim Sci. 2016;55(5):582-7
pubmed: 27657714
J Immunother Cancer. 2016 Dec 20;4:97
pubmed: 28031824
Front Vet Sci. 2021 Jun 21;8:664318
pubmed: 34235200
Clin Cancer Res. 2016 Sep 1;22(17):4328-40
pubmed: 26979392
Vet Dermatol. 2021 Dec;32(6):547-e151
pubmed: 33891338
Elife. 2013 Apr 16;2:e00458
pubmed: 23599893
Vet Dermatol. 2017 Feb;28(1):60-e15
pubmed: 28133874
Science. 2018 Jan 5;359(6371):104-108
pubmed: 29302014
PLoS One. 2020 Jul 2;15(7):e0235518
pubmed: 32614928
J Nutr. 2013 Apr;143(4):417-23
pubmed: 23343669
Genome Med. 2021 Oct 13;13(1):160
pubmed: 34641962
Science. 2015 Nov 27;350(6264):1084-9
pubmed: 26541606
Nature. 2022 Apr;604(7907):732-739
pubmed: 35418674
Science. 2018 Jan 5;359(6371):97-103
pubmed: 29097493
Science. 2021 Feb 5;371(6529):595-602
pubmed: 33542131
Science. 2020 Sep 18;369(6510):1481-1489
pubmed: 32792462
ISRN Vet Sci. 2013 Jan 17;2013:941275
pubmed: 23738139
Nat Rev Cancer. 2017 May;17(5):271-285
pubmed: 28303904
Commun Biol. 2019 Jul 19;2:266
pubmed: 31341965
mBio. 2013 Nov 05;4(6):e00692-13
pubmed: 24194538
Vet Surg. 2008 Jul;37(5):454-60
pubmed: 18986312
Animals (Basel). 2021 Aug 18;11(8):
pubmed: 34438891
Nat Rev Gastroenterol Hepatol. 2016 Dec;13(12):691-706
pubmed: 27848961
ISME J. 2012 Nov;6(11):2033-44
pubmed: 22695862
Science. 2015 Nov 27;350(6264):1079-84
pubmed: 26541610
PLoS One. 2022 Jun 9;17(6):e0269425
pubmed: 35679242
Science. 2018 Jan 5;359(6371):91-97
pubmed: 29097494
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13780-5
pubmed: 17699621
J Clin Oncol. 2012 Jul 20;30(21):2678-83
pubmed: 22711850
J Anim Sci. 2018 Jul 28;96(8):3102-3111
pubmed: 29790949
Cancer Cell. 2012 Apr 17;21(4):504-16
pubmed: 22516259
Vet Med Sci. 2016 Jan 11;2(2):71-94
pubmed: 29067182
J Vet Med Sci. 2017 Nov 17;79(11):1840-1847
pubmed: 28993566
Science. 2016 Apr 29;352(6285):560-4
pubmed: 27126039
Front Immunol. 2020 Apr 23;11:700
pubmed: 32391012
Nat Med. 2018 Apr 10;24(4):392-400
pubmed: 29634682
Eur J Cancer. 2021 Jul;151:25-34
pubmed: 33962358
Nature. 2018 Mar 8;555(7695):210-215
pubmed: 29489753
Sci Transl Med. 2017 Nov 15;9(416):
pubmed: 29141885