The relationships between motor behavior and sensory gating in the ball rotation task.
Electroencephalography
Gating
Sensorimotor integration
Somatosensory evoked potentials
Journal
Experimental brain research
ISSN: 1432-1106
Titre abrégé: Exp Brain Res
Pays: Germany
ID NLM: 0043312
Informations de publication
Date de publication:
Oct 2022
Oct 2022
Historique:
received:
04
02
2022
accepted:
04
08
2022
pubmed:
12
8
2022
medline:
28
9
2022
entrez:
11
8
2022
Statut:
ppublish
Résumé
During voluntary muscle contraction, sensory information induced by electrostimulation of the nerves supplying the contracting muscle is inhibited and the amplitude of the corresponding somatosensory evoked potential (SEP) decreases. This phenomenon is called "gating." The reduction of the SEP amplitude is reportedly significantly larger when task performance is high. However, the relationship between dexterous movement skills and gating remains unclear. In this study, we investigated through a ball rotation (BR) task how dexterous movement skills affect the SEP amplitudes. Thirty healthy subjects performed the BR task comprising the rotation of two wooden balls as quickly as possible. We estimated the median number of ball rotations for each participant and classified the participants into two (fast and slow) groups based on the results. Moreover, we recorded SEPs, while the subjects performed BR tasks or rested. SEP amplitude reduction (P45) was significantly larger in the fast than in the slow group. We also observed that the P45 amplitude during the BR task was attenuated even more so in the case of the participants with better dexterous movement skills. Our results suggest that the participants with better dexterous movement skills might display stronger somatosensory information suppression because of increasing the motor cortex activity and the afferent input during the BR task.
Identifiants
pubmed: 35951094
doi: 10.1007/s00221-022-06439-y
pii: 10.1007/s00221-022-06439-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2659-2666Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503
pubmed: 1782527
doi: 10.1093/brain/114.6.2465
Bernardi NF, Darainy M, Ostry DJ (2015) Somatosensory contribution to the initial stages of human motor learning. J Neurosci 35:14316–14326
pubmed: 26490869
pmcid: 4683690
doi: 10.1523/JNEUROSCI.1344-15.2015
Cohen D, Cuffin BN (1983) Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 56:38–51
pubmed: 6190632
doi: 10.1016/0013-4694(83)90005-6
Cohen D, Cuffin B (1987) A method for combining MEG and EEG to determine the sources. Phys Med Biol 32:85
pubmed: 3823144
doi: 10.1088/0031-9155/32/1/013
Desmedt JE, Cheron G (1981) Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic p22 and N30 components. Electroencephalogr Clin Neurophysiol 52:553–570
pubmed: 6172255
doi: 10.1016/0013-4694(81)91430-9
Enomoto H, Ugawa Y, Hanajima R et al (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158
pubmed: 11682355
doi: 10.1016/S1388-2457(01)00667-8
Hiraoka K, Kori C, Sato K (2017) The somatosensory-evoked potential in reaction time is gated and elicited earlier when the motor response to a somatosensory cue is faster. NeuroReport 28:451–456
pubmed: 28430708
doi: 10.1097/WNR.0000000000000784
Hoshiyama M, Sheean G (1998) Changes of somatosensory evoked potentials preceding rapid voluntary movement in Go/No-go choice reaction time task. Brain Res Cogn Brain Res 7:137–142
pubmed: 9774718
doi: 10.1016/S0926-6410(98)00018-4
Hupfeld KE, Ketcham CJ, Schneider HD (2017) Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks. Exp Brain Res 235:851–859
pubmed: 27909747
doi: 10.1007/s00221-016-4848-5
Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14:851–857
pubmed: 15054058
doi: 10.1093/cercor/bhh043
Ishikawa S, Matsunaga K, Nakanishi R et al (2007) Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin Neurophysiol 118:1033–1043
pubmed: 17382582
doi: 10.1016/j.clinph.2007.02.003
Johansson RS (1998) Sensory input and control of grip. Novartis Found Symp 218:45–63
pubmed: 9949815
Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10:345–359
pubmed: 19352402
doi: 10.1038/nrn2621
Jones S (1981) An ‘interference’ approach to the study of somatosensory evoked potentials in man. Electroencephalogr Clin Neurophysiol 52:517–530
pubmed: 6172252
doi: 10.1016/0013-4694(81)91427-9
Jones EG, Coulter JD, Hendry SH (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181:291–347
pubmed: 99458
doi: 10.1002/cne.901810206
Jones SJ, Halonen JP, Shawkat F (1989) Centrifugal and centripetal mechanisms involved in the ‘gating’of cortical SEPs during movement. Electroencephalogr Clin Neurophysio 74:36–45
doi: 10.1016/0168-5597(89)90049-X
Kakigi R, Koyama S, Hoshiyama M, Kitamura Y, Shimojo M, Watanabe S, Nakamura A (1996) Effects of tactile interference stimulation on somatosensory evoked magnetic fields. NeuroReport 7:405–408
pubmed: 8730792
doi: 10.1097/00001756-199601310-00007
Kakigi R, Hoshiyama M, Shimojo M et al (2000) The somatosensory evoked magnetic fields. Prog Neurobiol 61:495–523
pubmed: 10748321
doi: 10.1016/S0301-0082(99)00063-5
Kawashima R, Matsumura M, Sadato N et al (1998) Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements - a PET study. Eur J Neurosci 10:2254–2260
pubmed: 9749754
doi: 10.1046/j.1460-9568.1998.00237.x
Kirimoto H, Tamaki H, Suzuki M, Matsumoto T, Sugawara K, Kojima S, Onishi H (2014) Sensorimotor modulation differs with load type during constant finger force or position. PLoS ONE 9:e108058
pubmed: 25233353
pmcid: 4169486
doi: 10.1371/journal.pone.0108058
Lei Y, Ozdemir RA, Perez MA (2018) Gating of sensory input at subcortical and cortical levels during grasping in humans. J Neurosci 38:7237–7247
pubmed: 29976624
pmcid: 6096046
doi: 10.1523/JNEUROSCI.0545-18.2018
Lei Y, Perez MA (2017) Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. J Physiol 595:6203–6217
pubmed: 28513860
pmcid: 5599492
doi: 10.1113/JP274504
Matthews PB (1981) Evolving views on the internal operation and functional role of the muscle spindle. J Physiol 320:1–30
pubmed: 6459449
pmcid: 1244029
doi: 10.1113/jphysiol.1981.sp013931
Mauguière F, Desmedt JE, Courjon J (1983) Astereognosis and dissociated loss of frontal or parietal components of somatosensory evoked potentials in hemispheric lesions. Detailed correlations with clinical signs and computerized tomographic scanning. Brain 106:271–311
pubmed: 6850271
doi: 10.1093/brain/106.2.271
Nagamine T, Kajola M, Salmelin R, Shibasaki H, Hari R (1996) Movement-related slow cortical magnetic fields and changes of spontaneous MEG-and EEG-brain rhythms. Electroencephalogr Clin Neurophysiol 99:274–286
pubmed: 8862117
doi: 10.1016/0013-4694(96)95154-8
Ohashi H, Gribble PL, Ostry DJ (2019) Somatosensory cortical excitability changes precede those in motor cortex during human motor learning. J Neurophysiol 122:1397–1405
pubmed: 31390294
pmcid: 6843109
doi: 10.1152/jn.00383.2019
Papakostopoulos D, Cooper R, Crow HJ (1975) Inhibition of cortical evoked potentials and sensation by self-initiated movement in man. Nature 258:321–324
pubmed: 1196355
doi: 10.1038/258321a0
Pavlova E, Kuo MF, Nitsche MA, Borg J (2014) Transcranial direct current stimulation of the premotor cortex: effects on hand dexterity. Brain Res 1576:52–62
pubmed: 24978602
doi: 10.1016/j.brainres.2014.06.023
Pearce AJ, Thickbroom GW, Byrnes ML, Mastaglia FL (2000) Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp Brain Res 130:238–243
pubmed: 10672477
doi: 10.1007/s002219900236
Puce A, Hämäläinen MS (2017) A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci 7:58
pmcid: 5483631
doi: 10.3390/brainsci7060058
Rauch R, Angel RW, Boylls CC (1985) Velocity-dependent suppression of somatosensory evoked potentials during movement. Electroencephalogr Clin Neurophysiol 62:421–425
pubmed: 2415337
doi: 10.1016/0168-5597(85)90051-6
Reid LB, Sale MV, Cunnington R, Mattingley JB, Rose SE (2017) Brain changes following four weeks of unimanual motor training: evidence from fMRI-guided diffusion MRI tractography. Hum Brain Mapp 38:4302–4312
pubmed: 28677154
pmcid: 6867081
doi: 10.1002/hbm.23514
Ridding MC, Brouwer B, Nordstrom MA (2000) Reduced interhemispheric inhibition in musicians. Exp Brain Res 133:249–253
pubmed: 10968226
doi: 10.1007/s002210000428
Rivera-Urbina GN, Batsikadze G, Molero-Chamizo A, Paulus W, Kuo MF, Nitsche MA (2015) Parietal transcranial direct current stimulation modulates primary motor cortex excitability. Eur J Neurosci 41:845–855
pubmed: 25645274
doi: 10.1111/ejn.12840
Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD (1982) Manual motor performance in a deafferented man. Brain 105:515–542
pubmed: 6286035
doi: 10.1093/brain/105.3.515
Rushton DN, Rothwell JC, Craggs MD (1981) Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104:465–491
pubmed: 7272711
doi: 10.1093/brain/104.3.465
Seyal M, Ortstadt JL, Kraft LW, Gabor AJ (1987) Effect of movement on human spinal and subcortical somatosensory evoked potentials. Neurology 37:650–650
pubmed: 3561777
doi: 10.1212/WNL.37.4.650
Staines W, Brooke J, Misiaszek J, McIlroy W (1997) Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg II. Correlation with rate of stretch of extensor muscles of the leg. Exp Brain Res 115:156–164
pubmed: 9224843
doi: 10.1007/PL00005676
Sugawara K, Onishi H, Yamashiro K et al (2016) Effect of muscle contraction strength on gating of somatosensory magnetic fields. Exp Brain Res 234:3389–3398
pubmed: 27435203
doi: 10.1007/s00221-016-4736-z
Wasaka T, Nakata H, Kida T, Kakigi R (2005) Changes in the centrifugal gating effect on somatosensory evoked potentials depending on the level of contractile force. Exp Brain Res 166:118–125
pubmed: 15856201
doi: 10.1007/s00221-005-2333-7
Wasaka T, Kida T, Nakata H, Kakigi R (2006) Pre-movement modulation of tibial nerve SEPs caused by a self-initiated dorsiflexion. Clin Neurophysiol 117:2023–2029
pubmed: 16887385
doi: 10.1016/j.clinph.2006.06.003
Wasaka T, Kida T, Kakigi R (2017) Facilitation of information processing in the primary somatosensory area in the ball rotation task. Sci Rep 7:1–9
doi: 10.1038/s41598-017-15775-x
Wasaka T, Kida T, Kakigi R (2021) Dexterous manual movement facilitates information processing in the primary somatosensory cortex: a magnetoencephalographic study. Eur J Neurosci 54:4638–4648
pubmed: 33987876
pmcid: 8361953
doi: 10.1111/ejn.15310
Yamashiro K, Sato D, Onishi H, Yoshida T, Horiuchi Y, Nakazawa S, Maruyama A (2013) Skill-specific changes in somatosensory-evoked potentials and reaction times in baseball players. Exp Brain Res 225:197–203
pubmed: 23224701
doi: 10.1007/s00221-012-3361-8