The relationships between motor behavior and sensory gating in the ball rotation task.


Journal

Experimental brain research
ISSN: 1432-1106
Titre abrégé: Exp Brain Res
Pays: Germany
ID NLM: 0043312

Informations de publication

Date de publication:
Oct 2022
Historique:
received: 04 02 2022
accepted: 04 08 2022
pubmed: 12 8 2022
medline: 28 9 2022
entrez: 11 8 2022
Statut: ppublish

Résumé

During voluntary muscle contraction, sensory information induced by electrostimulation of the nerves supplying the contracting muscle is inhibited and the amplitude of the corresponding somatosensory evoked potential (SEP) decreases. This phenomenon is called "gating." The reduction of the SEP amplitude is reportedly significantly larger when task performance is high. However, the relationship between dexterous movement skills and gating remains unclear. In this study, we investigated through a ball rotation (BR) task how dexterous movement skills affect the SEP amplitudes. Thirty healthy subjects performed the BR task comprising the rotation of two wooden balls as quickly as possible. We estimated the median number of ball rotations for each participant and classified the participants into two (fast and slow) groups based on the results. Moreover, we recorded SEPs, while the subjects performed BR tasks or rested. SEP amplitude reduction (P45) was significantly larger in the fast than in the slow group. We also observed that the P45 amplitude during the BR task was attenuated even more so in the case of the participants with better dexterous movement skills. Our results suggest that the participants with better dexterous movement skills might display stronger somatosensory information suppression because of increasing the motor cortex activity and the afferent input during the BR task.

Identifiants

pubmed: 35951094
doi: 10.1007/s00221-022-06439-y
pii: 10.1007/s00221-022-06439-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2659-2666

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503
pubmed: 1782527 doi: 10.1093/brain/114.6.2465
Bernardi NF, Darainy M, Ostry DJ (2015) Somatosensory contribution to the initial stages of human motor learning. J Neurosci 35:14316–14326
pubmed: 26490869 pmcid: 4683690 doi: 10.1523/JNEUROSCI.1344-15.2015
Cohen D, Cuffin BN (1983) Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 56:38–51
pubmed: 6190632 doi: 10.1016/0013-4694(83)90005-6
Cohen D, Cuffin B (1987) A method for combining MEG and EEG to determine the sources. Phys Med Biol 32:85
pubmed: 3823144 doi: 10.1088/0031-9155/32/1/013
Desmedt JE, Cheron G (1981) Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic p22 and N30 components. Electroencephalogr Clin Neurophysiol 52:553–570
pubmed: 6172255 doi: 10.1016/0013-4694(81)91430-9
Enomoto H, Ugawa Y, Hanajima R et al (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158
pubmed: 11682355 doi: 10.1016/S1388-2457(01)00667-8
Hiraoka K, Kori C, Sato K (2017) The somatosensory-evoked potential in reaction time is gated and elicited earlier when the motor response to a somatosensory cue is faster. NeuroReport 28:451–456
pubmed: 28430708 doi: 10.1097/WNR.0000000000000784
Hoshiyama M, Sheean G (1998) Changes of somatosensory evoked potentials preceding rapid voluntary movement in Go/No-go choice reaction time task. Brain Res Cogn Brain Res 7:137–142
pubmed: 9774718 doi: 10.1016/S0926-6410(98)00018-4
Hupfeld KE, Ketcham CJ, Schneider HD (2017) Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks. Exp Brain Res 235:851–859
pubmed: 27909747 doi: 10.1007/s00221-016-4848-5
Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14:851–857
pubmed: 15054058 doi: 10.1093/cercor/bhh043
Ishikawa S, Matsunaga K, Nakanishi R et al (2007) Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin Neurophysiol 118:1033–1043
pubmed: 17382582 doi: 10.1016/j.clinph.2007.02.003
Johansson RS (1998) Sensory input and control of grip. Novartis Found Symp 218:45–63
pubmed: 9949815
Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10:345–359
pubmed: 19352402 doi: 10.1038/nrn2621
Jones S (1981) An ‘interference’ approach to the study of somatosensory evoked potentials in man. Electroencephalogr Clin Neurophysiol 52:517–530
pubmed: 6172252 doi: 10.1016/0013-4694(81)91427-9
Jones EG, Coulter JD, Hendry SH (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181:291–347
pubmed: 99458 doi: 10.1002/cne.901810206
Jones SJ, Halonen JP, Shawkat F (1989) Centrifugal and centripetal mechanisms involved in the ‘gating’of cortical SEPs during movement. Electroencephalogr Clin Neurophysio 74:36–45
doi: 10.1016/0168-5597(89)90049-X
Kakigi R, Koyama S, Hoshiyama M, Kitamura Y, Shimojo M, Watanabe S, Nakamura A (1996) Effects of tactile interference stimulation on somatosensory evoked magnetic fields. NeuroReport 7:405–408
pubmed: 8730792 doi: 10.1097/00001756-199601310-00007
Kakigi R, Hoshiyama M, Shimojo M et al (2000) The somatosensory evoked magnetic fields. Prog Neurobiol 61:495–523
pubmed: 10748321 doi: 10.1016/S0301-0082(99)00063-5
Kawashima R, Matsumura M, Sadato N et al (1998) Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements - a PET study. Eur J Neurosci 10:2254–2260
pubmed: 9749754 doi: 10.1046/j.1460-9568.1998.00237.x
Kirimoto H, Tamaki H, Suzuki M, Matsumoto T, Sugawara K, Kojima S, Onishi H (2014) Sensorimotor modulation differs with load type during constant finger force or position. PLoS ONE 9:e108058
pubmed: 25233353 pmcid: 4169486 doi: 10.1371/journal.pone.0108058
Lei Y, Ozdemir RA, Perez MA (2018) Gating of sensory input at subcortical and cortical levels during grasping in humans. J Neurosci 38:7237–7247
pubmed: 29976624 pmcid: 6096046 doi: 10.1523/JNEUROSCI.0545-18.2018
Lei Y, Perez MA (2017) Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. J Physiol 595:6203–6217
pubmed: 28513860 pmcid: 5599492 doi: 10.1113/JP274504
Matthews PB (1981) Evolving views on the internal operation and functional role of the muscle spindle. J Physiol 320:1–30
pubmed: 6459449 pmcid: 1244029 doi: 10.1113/jphysiol.1981.sp013931
Mauguière F, Desmedt JE, Courjon J (1983) Astereognosis and dissociated loss of frontal or parietal components of somatosensory evoked potentials in hemispheric lesions. Detailed correlations with clinical signs and computerized tomographic scanning. Brain 106:271–311
pubmed: 6850271 doi: 10.1093/brain/106.2.271
Nagamine T, Kajola M, Salmelin R, Shibasaki H, Hari R (1996) Movement-related slow cortical magnetic fields and changes of spontaneous MEG-and EEG-brain rhythms. Electroencephalogr Clin Neurophysiol 99:274–286
pubmed: 8862117 doi: 10.1016/0013-4694(96)95154-8
Ohashi H, Gribble PL, Ostry DJ (2019) Somatosensory cortical excitability changes precede those in motor cortex during human motor learning. J Neurophysiol 122:1397–1405
pubmed: 31390294 pmcid: 6843109 doi: 10.1152/jn.00383.2019
Papakostopoulos D, Cooper R, Crow HJ (1975) Inhibition of cortical evoked potentials and sensation by self-initiated movement in man. Nature 258:321–324
pubmed: 1196355 doi: 10.1038/258321a0
Pavlova E, Kuo MF, Nitsche MA, Borg J (2014) Transcranial direct current stimulation of the premotor cortex: effects on hand dexterity. Brain Res 1576:52–62
pubmed: 24978602 doi: 10.1016/j.brainres.2014.06.023
Pearce AJ, Thickbroom GW, Byrnes ML, Mastaglia FL (2000) Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp Brain Res 130:238–243
pubmed: 10672477 doi: 10.1007/s002219900236
Puce A, Hämäläinen MS (2017) A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci 7:58
pmcid: 5483631 doi: 10.3390/brainsci7060058
Rauch R, Angel RW, Boylls CC (1985) Velocity-dependent suppression of somatosensory evoked potentials during movement. Electroencephalogr Clin Neurophysiol 62:421–425
pubmed: 2415337 doi: 10.1016/0168-5597(85)90051-6
Reid LB, Sale MV, Cunnington R, Mattingley JB, Rose SE (2017) Brain changes following four weeks of unimanual motor training: evidence from fMRI-guided diffusion MRI tractography. Hum Brain Mapp 38:4302–4312
pubmed: 28677154 pmcid: 6867081 doi: 10.1002/hbm.23514
Ridding MC, Brouwer B, Nordstrom MA (2000) Reduced interhemispheric inhibition in musicians. Exp Brain Res 133:249–253
pubmed: 10968226 doi: 10.1007/s002210000428
Rivera-Urbina GN, Batsikadze G, Molero-Chamizo A, Paulus W, Kuo MF, Nitsche MA (2015) Parietal transcranial direct current stimulation modulates primary motor cortex excitability. Eur J Neurosci 41:845–855
pubmed: 25645274 doi: 10.1111/ejn.12840
Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD (1982) Manual motor performance in a deafferented man. Brain 105:515–542
pubmed: 6286035 doi: 10.1093/brain/105.3.515
Rushton DN, Rothwell JC, Craggs MD (1981) Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104:465–491
pubmed: 7272711 doi: 10.1093/brain/104.3.465
Seyal M, Ortstadt JL, Kraft LW, Gabor AJ (1987) Effect of movement on human spinal and subcortical somatosensory evoked potentials. Neurology 37:650–650
pubmed: 3561777 doi: 10.1212/WNL.37.4.650
Staines W, Brooke J, Misiaszek J, McIlroy W (1997) Movement-induced gain modulation of somatosensory potentials and soleus H-reflexes evoked from the leg II. Correlation with rate of stretch of extensor muscles of the leg. Exp Brain Res 115:156–164
pubmed: 9224843 doi: 10.1007/PL00005676
Sugawara K, Onishi H, Yamashiro K et al (2016) Effect of muscle contraction strength on gating of somatosensory magnetic fields. Exp Brain Res 234:3389–3398
pubmed: 27435203 doi: 10.1007/s00221-016-4736-z
Wasaka T, Nakata H, Kida T, Kakigi R (2005) Changes in the centrifugal gating effect on somatosensory evoked potentials depending on the level of contractile force. Exp Brain Res 166:118–125
pubmed: 15856201 doi: 10.1007/s00221-005-2333-7
Wasaka T, Kida T, Nakata H, Kakigi R (2006) Pre-movement modulation of tibial nerve SEPs caused by a self-initiated dorsiflexion. Clin Neurophysiol 117:2023–2029
pubmed: 16887385 doi: 10.1016/j.clinph.2006.06.003
Wasaka T, Kida T, Kakigi R (2017) Facilitation of information processing in the primary somatosensory area in the ball rotation task. Sci Rep 7:1–9
doi: 10.1038/s41598-017-15775-x
Wasaka T, Kida T, Kakigi R (2021) Dexterous manual movement facilitates information processing in the primary somatosensory cortex: a magnetoencephalographic study. Eur J Neurosci 54:4638–4648
pubmed: 33987876 pmcid: 8361953 doi: 10.1111/ejn.15310
Yamashiro K, Sato D, Onishi H, Yoshida T, Horiuchi Y, Nakazawa S, Maruyama A (2013) Skill-specific changes in somatosensory-evoked potentials and reaction times in baseball players. Exp Brain Res 225:197–203
pubmed: 23224701 doi: 10.1007/s00221-012-3361-8

Auteurs

Mayu Akaiwa (M)

Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan.

Yuya Matsuda (Y)

Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan.

Yuta Soma (Y)

Department of Rehabilitation, Kashiwaba Neurosurgical Hospital, Sapporo, Hokkaido, Japan.

Eriko Shibata (E)

Department of Physical Therapy, Faculty of Human Science, Hokkaido Bunkyo University, Eniwa, Hokkaido, Japan.

Hidekazu Saito (H)

Department of Occupational Therapy, School of Health Science, Sapporo Medical University, Sapporo, Hokkaido, Japan.

Takeshi Sasaki (T)

Department of Physical Therapy, School of Health Science, Sapporo Medical University, Sapporo, Hokkaido, Japan.

Kazuhiro Sugawara (K)

Department of Physical Therapy, School of Health Science, Sapporo Medical University, Sapporo, Hokkaido, Japan. kaz.sugawara@sapmed.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH