Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus.
Alkaloids
Catharanthus roseus
Gene duplication
Neofunctionalization
O-methyltransferase
Journal
Protoplasma
ISSN: 1615-6102
Titre abrégé: Protoplasma
Pays: Austria
ID NLM: 9806853
Informations de publication
Date de publication:
Mar 2023
Mar 2023
Historique:
received:
02
06
2022
accepted:
26
07
2022
pubmed:
11
8
2022
medline:
18
2
2023
entrez:
10
8
2022
Statut:
ppublish
Résumé
The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.
Identifiants
pubmed: 35947213
doi: 10.1007/s00709-022-01801-x
pii: 10.1007/s00709-022-01801-x
doi:
Substances chimiques
Alkaloids
0
Antineoplastic Agents
0
Methyltransferases
EC 2.1.1.-
Plant Proteins
0
Protein Isoforms
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
607-624Subventions
Organisme : Conseil Régional du Centre-Val de Loire
ID : ETOPOCentre
Organisme : Agence Nationale de la Recherche
ID : MIACYC - ANR-20-CE43-0010
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Ahmad B, Banerjee A, Tiwari H et al (2018) Structural and functional characterization of the Vindoline biosynthesis pathway enzymes of Catharanthus. J Mole Model 24:1–14. https://doi.org/10.1007/s00894-018-3590-2
doi: 10.1007/s00894-018-3590-2
Besseau S, Kellner F, Lanoue A et al (2013) A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus. Plant Physiology 163:1792–1803. https://doi.org/10.1104/pp.113.222828
doi: 10.1104/pp.113.222828
pubmed: 24108213
pmcid: 3850188
Boccia M, Grzech D, Lopes AA et al (2022) directed biosynthesis of new to nature alkaloids in a heterologous Nicotiana benthamiana expression host. Front Plant Scie 13:919443. https://doi.org/10.3389/fpls.2022.919443
doi: 10.3389/fpls.2022.919443
Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254. https://doi.org/10.1006/abio.1976.9999
doi: 10.1006/abio.1976.9999
pubmed: 942051
Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Nat Acad Scie 112:3205–3210. https://doi.org/10.1073/pnas.1423555112
doi: 10.1073/pnas.1423555112
Cacace S, Schröder G, Wehinger E et al (2003) A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations. Phytochemistry 62:127–137. https://doi.org/10.1016/S0031-9422(02)00483-1
doi: 10.1016/S0031-9422(02)00483-1
pubmed: 12482447
Caputi L, Franke J, Farrow SC et al (2018) Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 7:1–8. https://doi.org/10.1126/science.aat4100
doi: 10.1126/science.aat4100
Carney DW, Lukesh JC, Brody DM et al (2016) Ultrapotent vinblastines in which added molecular complexity further disrupts the target tubulin dimer–dimer interface. Proc Nat Acad Scie 113:9691–9698. https://doi.org/10.1073/pnas.1611405113
doi: 10.1073/pnas.1611405113
Carqueijeiro I, Noronha H, Duarte P et al (2013) Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant Physiology 162:1486–1496. https://doi.org/10.1104/pp.113.220558
doi: 10.1104/pp.113.220558
pubmed: 23686419
pmcid: 3707533
Carqueijeiro I, Masini E, Foureau E et al (2015) Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors. Plant Biology 17:1242–1246. https://doi.org/10.1111/plb.12380
doi: 10.1111/plb.12380
pubmed: 26284695
Carqueijeiro I, Brown S, Chung K et al (2018) Two tabersonine 6,7-epoxidases initiate lochnericine-derived alkaloid biosynthesis in Catharanthus roseus. Plant Physiology 177:1473–1486. https://doi.org/10.1104/pp.18.00549
doi: 10.1104/pp.18.00549
pubmed: 29934299
pmcid: 6084683
Carqueijeiro I, Dugé de Bernonville T, Lanoue A et al (2018) A BAHD acyltransferase catalyzing 19- O -acetylation of tabersonine derivatives in roots of Catharanthus roseus enables combinatorial synthesis of monoterpene indole alkaloids. The Plant J 94:469–484. https://doi.org/10.1111/tpj.13868
doi: 10.1111/tpj.13868
pubmed: 29438577
Carqueijeiro I, Koudounas K, Dugé de Bernonville T et al (2021) Alternative splicing creates a pseudo-strictosidine β-d-glucosidase modulating alkaloid synthesis in Catharanthus roseus. Plant Physiology 185:836–856. https://doi.org/10.1093/plphys/kiaa075
doi: 10.1093/plphys/kiaa075
pubmed: 33793899
De Carolis E, De Luca V (1994) A novel 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis: characterization, purification and kinetic properties. Plant Cell Tissue and Organ Culture 38:281–287. https://doi.org/10.1007/BF00033888
doi: 10.1007/BF00033888
de Kraker JW, Gershenzon J (2011) From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis. The Plant Cell. 23:38–53. https://doi.org/10.1105/tpc.110.079269
doi: 10.1105/tpc.110.079269
pubmed: 21205930
pmcid: 3051243
De Luca V, Fernandez JA, Campbell D, Kurz WGW (1988) Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiology 86:447–450. https://doi.org/10.1104/pp.86.2.447
doi: 10.1104/pp.86.2.447
pubmed: 16665928
pmcid: 1054504
De Luca V, Salim V, Thamm A et al (2014) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Bio 19:35–42. https://doi.org/10.1016/j.pbi.2014.03.006
doi: 10.1016/j.pbi.2014.03.006
Dugé de Bernonville T, Foureau E, Parage C et al (2015) Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 16:619. https://doi.org/10.1186/s12864-015-1678-y
doi: 10.1186/s12864-015-1678-y
pubmed: 26285573
pmcid: 4541752
Erhirhie EO, Ikegbune C, Okeke AI et al (2021) Antimalarial herbal drugs: a review of their interactions with conventional antimalarial drugs. Clin Phytoscience 7:4. https://doi.org/10.1186/s40816-020-00242-4
doi: 10.1186/s40816-020-00242-4
Farrow SC, Kamileen MO, Meades J et al (2018) Cytochrome P450 and O-methyltransferase catalyze the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga. J Bio Chem 293:13821–13833. https://doi.org/10.1074/jbc.RA118.004060
doi: 10.1074/jbc.RA118.004060
Ferreres F, Pereira DM, Valentão P et al (2008) New phenolic compounds and antioxidant potential of Catharanthus roseus. J Agri Food Chem 56:9967–9974. https://doi.org/10.1021/jf8022723
doi: 10.1021/jf8022723
Foureau E, Carqueijeiro I, Dugé de Bernonville T et al (2016) Prequels to synthetic biology: from candidate gene identification and validation to enzyme subcellular localization in plant and yeast cells. Methods Enzymol 576:167–206. https://doi.org/10.1016/bs.mie.2016.02.013
doi: 10.1016/bs.mie.2016.02.013
pubmed: 27480687
Franke J, Kim J, Hamilton JP et al (2019) Gene discovery in Gelsemium highlights conserved gene clusters in monoterpene indole alkaloid biosynthesis. ChemBioChem 20:83–87. https://doi.org/10.1002/cbic.201800592
doi: 10.1002/cbic.201800592
pubmed: 30300974
Giddings L-A, Liscombe DK, Hamilton JP et al (2011) A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome p450 in Catharanthus roseus. J Bio Chem 286:16751–16757. https://doi.org/10.1074/jbc.M111.225383
doi: 10.1074/jbc.M111.225383
Guirimand G, Burlat V, Oudin A et al (2009) Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Reports 28:1215–1234. https://doi.org/10.1007/s00299-009-0722-2
doi: 10.1007/s00299-009-0722-2
pubmed: 19504099
Guirimand G, Courdavault V, Lanoue A et al (2010) Strictosidine activation in Apocynaceae Towards a “nuclear time bomb”? BMC Plant Bio 10:1–20. https://doi.org/10.1186/1471-2229-10-182
doi: 10.1186/1471-2229-10-182
Guirimand G, Guihur A, Poutrain P et al (2011) Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J Plant Physio 168:549–557. https://doi.org/10.1016/j.jplph.2010.08.018
doi: 10.1016/j.jplph.2010.08.018
Ishikawa H, Colby DA, Seto S et al (2009) Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J AmChem Soc 131:4904–4916. https://doi.org/10.1021/ja809842b
doi: 10.1021/ja809842b
Jia Q, Brown R, Köllner TG et al (2022) Origin and early evolution of the plant terpene synthase family. Proceed Nation Acad of Scie United States of Am 119:e2100361119. https://doi.org/10.1073/pnas.2100361119
doi: 10.1073/pnas.2100361119
Keglevich P, Hazai L, Kalaus G, Szántay C (2012) Modifications on the basic skeletons of vinblastine and vincristine. Molecules 17:5893–5914. https://doi.org/10.3390/molecules17055893
doi: 10.3390/molecules17055893
pubmed: 22609781
pmcid: 6268133
Kellner F, Geu-Flores F, Sherden NH et al (2015) Discovery of a P450-catalyzed step in vindoline biosynthesis: a link between the aspidosperma and eburnamine alkaloids. Chem Comm 51:7626–7628. https://doi.org/10.1039/C5CC01309G
doi: 10.1039/C5CC01309G
pubmed: 25850027
Koudounas K, Thomopoulou M, Michaelidis C et al (2017) The C-domain of oleuropein β -glucosidase assists in protein folding and sequesters the enzyme in nucleus. Plant Physio 174:1371–1383. https://doi.org/10.1104/pp.17.00512
doi: 10.1104/pp.17.00512
Kulagina N, Guirimand G, Melin C et al (2021) Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories. Microb Biotechnol 1751–7915:13898. https://doi.org/10.1111/1751-7915.13898
doi: 10.1111/1751-7915.13898
Kulagina N, Méteignier LV, Papon N et al (2022) More than a Catharanthus plant: a multicellular and pluri-organelle alkaloid-producing factory. Curr Opin Plant Biol 67:102200. https://doi.org/10.1016/j.pbi.2022.102200
doi: 10.1016/j.pbi.2022.102200
pubmed: 35339956
Laemmliuk, (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0
doi: 10.1038/227680a0
Lemos Cruz P, Kulagina N, Guirimand G et al (2021) Optimization of tabersonine methoxylation to increase vindoline precursor synthesis in yeast cell factories. Molecules 26:3596. https://doi.org/10.3390/molecules26123596
doi: 10.3390/molecules26123596
pubmed: 34208368
pmcid: 8231165
Levac D, Murata J, Kim WS, De Luca V (2008) Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O- methyltransferase. Plant J 53:225–236. https://doi.org/10.1111/j.1365-313X.2007.03337.x
doi: 10.1111/j.1365-313X.2007.03337.x
pubmed: 18053006
Lichman BR (2021) The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 38:103–129. https://doi.org/10.1039/D0NP00031K
doi: 10.1039/D0NP00031K
pubmed: 32745157
Liscombe DK, O’Connor SE (2011) A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry 72:1969–1977. https://doi.org/10.1016/j.phytochem.2011.07.001
doi: 10.1016/j.phytochem.2011.07.001
pubmed: 21802100
pmcid: 3435519
Liscombe DK, Usera AR, O’Connor SE (2010) Homolog of tocopherol C methyltransferases catalyzes N methylation in anticancer alkaloid biosynthesis. Proc Nat Acad Scie 107:18793–18798. https://doi.org/10.1073/pnas.1009003107
doi: 10.1073/pnas.1009003107
Liu J, Liu Y, Wang Y et al (2016) The combined effects of ethylene and meja on metabolic profiling of phenolic compounds in Catharanthus roseus revealed by metabolomics analysis. Front Physio 7:217. https://doi.org/10.3389/fphys.2016.00217
doi: 10.3389/fphys.2016.00217
Lou YR, Pichersky E, Last RL (2022) Deep roots and many branches: origins of plant-specialized metabolic enzymes in general metabolism. Curr Opin Plant Biol 66:102192. https://doi.org/10.1016/j.pbi.2022.102192
doi: 10.1016/j.pbi.2022.102192
pubmed: 35217473
Menéndez-Perdomo IM, Facchini PJ (2020) Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). J Bio Chem 295:1598–1612. https://doi.org/10.1074/jbc.RA119.011547
doi: 10.1074/jbc.RA119.011547
Miettinen K, Dong L, Navrot N et al (2014) The seco-iridoid pathway from Catharanthus roseus. Nature comm 5:3606. https://doi.org/10.1038/ncomms4606
doi: 10.1038/ncomms4606
Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. The Plant Cell 20:524–542. https://doi.org/10.1105/tpc.107.056630
doi: 10.1105/tpc.107.056630
pubmed: 18326827
pmcid: 2329939
Nisar A, Mamat AS, Hatim MI, Aslam MS, Ahmad MS (2017) Identification of flavonoids (quercetin, gallic acid and rutin) from Catharanthus roseus plant parts using deep eutectic solvent. Adv Exp Med Biol 3:1–6
Nomura T, Kutchan TM (2010) Three new o-methyltransferases are sufficient for all o-methylation reactions of ipecac alkaloid biosynthesis in root culture of Psychotria ipecacuanha. J Bio Chem 285:7722–7738. https://doi.org/10.1074/jbc.M109.086157
doi: 10.1074/jbc.M109.086157
O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23:532. https://doi.org/10.1039/b512615k
doi: 10.1039/b512615k
pubmed: 16874388
Ounaroon A, Decker G, Schmidt J et al (2003) ( R, S )-Reticuline 7- O -methyltransferase and ( R, S )-norcoclaurine 6- O -methyltransferase of Papaver somniferum - cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. The Plant J 36:808–819. https://doi.org/10.1046/j.1365-313X.2003.01928.x
doi: 10.1046/j.1365-313X.2003.01928.x
pubmed: 14675446
Parage C, Foureau E, Kellner F et al (2016) Class II cytochrome P450 reductase governs the biosynthesis of alkaloids. Plant Physio 172:1563–1577. https://doi.org/10.1104/pp.16.00801
doi: 10.1104/pp.16.00801
Park MR, Chen X, Lang DE et al (2018) Heterodimeric O -methyltransferases involved in the biosynthesis of noscapine in opium poppy. Plant J 95:252–267. https://doi.org/10.1111/tpj.13947
doi: 10.1111/tpj.13947
pubmed: 29723437
Pienkny S, Brandt W, Schmidt J et al (2009) Functional characterization of a novel benzylisoquinoline O -methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy ( Papaver somniferum L). Plant J 60:56–67. https://doi.org/10.1111/j.1365-313X.2009.03937.x
doi: 10.1111/j.1365-313X.2009.03937.x
pubmed: 19500305
Qu Y, Easson MLAE, Froese J et al (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Nat Acad Scie 112:6224–6229. https://doi.org/10.1073/pnas.1501821112
doi: 10.1073/pnas.1501821112
Rosales PF, Bordin GS, Gower AE, Moura S (2020) Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 143:104558. https://doi.org/10.1016/j.fitote.2020.104558
doi: 10.1016/j.fitote.2020.104558
pubmed: 32198108
Sadre R, Magallanes-Lundback M, Pradhan S et al (2016) Metabolite diversity in alkaloid biosynthesis: a multilane (diastereomer) highway for camptothecin synthesis in Camptotheca acuminata. The Plant Cell 28:1926–1944. https://doi.org/10.1105/tpc.16.00193
doi: 10.1105/tpc.16.00193
pubmed: 27432874
pmcid: 5006703
Salim V, Yu F, Altarejos J, De Luca V (2013) Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J 76:754–765. https://doi.org/10.1111/tpj.12330
doi: 10.1111/tpj.12330
pubmed: 24103035
Salim V, Jones AD, DellaPenna D et al (2018) Camptotheca acuminata 10-hydroxycamptothecin O-methyltransferase: an alkaloid biosynthetic enzyme co-opted from flavonoid metabolism. Plant J 95:112–125. https://doi.org/10.1111/tpj.13936
doi: 10.1111/tpj.13936
pubmed: 29681057
Schröder G, Unterbusch E, Kaltenbach M et al (1999) Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Letters 458:97–102. https://doi.org/10.1016/S0014-5793(99)01138-2
doi: 10.1016/S0014-5793(99)01138-2
pubmed: 10481044
Schröder G, Wehinger E, Schröder J (2002) Predicting the substrates of cloned plant O-methyltransferases. Phytochemistry 59:1–8. https://doi.org/10.1016/S0031-9422(01)00421-6
doi: 10.1016/S0031-9422(01)00421-6
pubmed: 11754938
Schröder G, Wehinger E, Lukačin R et al (2004) Flavonoid methylation: a novel 4′-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Phytochemistry 65:1085–1094. https://doi.org/10.1016/j.phytochem.2004.02.010
doi: 10.1016/j.phytochem.2004.02.010
pubmed: 15110688
Singh AK, Dwivedi V, Rai A et al (2015) Virus-induced gene silencing of Withaniasomnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnol J 13:1287–1299. https://doi.org/10.1111/pbi.12347
doi: 10.1111/pbi.12347
pubmed: 25809293
Sottomayor M, Ros Barceló A (2003) Peroxidase from Catharanthus roseus (L.) G. Don and the biosynthesis of alpha-3’,4’-anhydrovinblastine: a specific role for a multifunctional enzyme. Protoplasma 222:97–105. https://doi.org/10.1007/s00709-003-0003-9
doi: 10.1007/s00709-003-0003-9
pubmed: 14513315
Stander EA, Sepúlveda LJ, Dugé de Bernonville T et al (2020) Identifying genes involved in alkaloid biosynthesis in vinca minor through transcriptomics and gene co-expression analysis. Biomolecules 10:1595. https://doi.org/10.3390/biom10121595
doi: 10.3390/biom10121595
pubmed: 33255314
pmcid: 7761029
Stavrinides A, Tatsis EC, Foureau E et al (2015) Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Bio 22:336–341. https://doi.org/10.1016/j.chembiol.2015.02.006
doi: 10.1016/j.chembiol.2015.02.006
Stavrinides A, Tatsis EC, Caputi L et al (2016) Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity. Nature Comm 7:12116. https://doi.org/10.1038/ncomms12116
doi: 10.1038/ncomms12116
St-Pierre B, De Luca V (1995) A cytochrome P-450 monooxygenase catalyzes the first step in the conversion of tabersonine to vindoline in Catharanthus roseus. Plant Physio 109:131–139. https://doi.org/10.1104/pp.109.1.131
doi: 10.1104/pp.109.1.131
Tatsis EC, Carqueijeiro I, Dugé De Bernonville T et al (2017) A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nature Comm 8:1–9. https://doi.org/10.1038/s41467-017-00154-x
doi: 10.1038/s41467-017-00154-x
Tohge T, Fernie AR (2020) Co-regulation of clustered and neo-functionalized genes in plant-specialized metabolism. Plants (Basel). 9:622. https://doi.org/10.3390/plants9050622
doi: 10.3390/plants9050622
pubmed: 32414181
pmcid: 7285293
Vazquez-Flota F, De Carolis E, Alarco AM, De Luca V (1997) Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G Don. Plant Mole Bio 34:935–948. https://doi.org/10.1023/A:1005894001516
doi: 10.1023/A:1005894001516
Waadt R, Schmidt LK, Lohse M et al (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516. https://doi.org/10.1111/j.1365-313X.2008.03612.x
doi: 10.1111/j.1365-313X.2008.03612.x
pubmed: 18643980
Westekemper P, Wieczorek U, Gueritte F et al (1980) Radioimmunoassay for the determination of the indole alkaloid vindoline in Catharanthus. Planta Medica 39:24–37. https://doi.org/10.1055/s-2008-1074900
doi: 10.1055/s-2008-1074900
Williams D, Qu Y, Simionescu R, De Luca V (2019) The assembly of (+)-vincadifformine- and (−)-tabersonine-derived monoterpenoid indole alkaloids in Catharanthus roseus involves separate branch pathways. The Plant J 99:626–636. https://doi.org/10.1111/tpj.14346
doi: 10.1111/tpj.14346
pubmed: 31009114
Zhao Q, Yang J, Cui MY et al (2019) The reference genome sequence of Scutellaria baicalensis provides insights into the evolution of Wogonin biosynthesis. Molecular Plant. 12:935–950. https://doi.org/10.1016/j.molp.2019.04.002
doi: 10.1016/j.molp.2019.04.002
pubmed: 30999079
Courdavault V, Papon N, Clastre M, et al (2014) A look inside an alkaloid multisite plant: the Catharanthus logistics. Current Opinion in Plant Biology 19:43–50. https://doi.org/10.1016/j.pbi.2014.03.010
Dugé De Bernonville T, Carqueijeiro I, Lanoue A, et al (2017) Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Scientific Reports 7. https://doi.org/10.1038/srep40453
Huang M, Liao Z, Li X, et al (2021) Effects of antiarrhythmic drugs on herg gating in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with short qt syndrome type 1. Frontiers in Pharmacology 12 https://doi.org/10.3389/fphar.2021.675003
Leong BJ, Lybrand D, Lou YR, et al (2019) Evolution of metabolic novelty: a trichome-expressed invertase creates specialized metabolic diversity in wild tomato. Sci Adv 5: eaaw3754. https://doi.org/10.1126/sciadv.aaw3754
Pompon D, Louerat B, Bronine A, Urban P (1996) Yeast expression of animal and plant P450s in optimized redox environments. In: Methods in Enzymology. Academic Press Inc., pp 51–64
St-Pierre B, Besseau S, Clastre M, et al (2013) Deciphering the evolution, cell biology and regulation of monoterpene indole alkaloids. In: Giglioli-Guivarc’h NBT-A in BR (ed) New Light on Alkaloid Biosynthesis and Future Prospects. Academic Press, pp 73–109
Thawabteh A, Juma S, Bader M, et al (2019) The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. toxins 11:656. https://doi.org/10.3390/toxins11110656