Chemical Composition, Antiaging Activities and Molecular Docking Studies of Essential Oils from Acca sellowiana (Feijoa).


Journal

Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 26 03 2022
accepted: 04 08 2022
pubmed: 9 8 2022
medline: 20 9 2022
entrez: 8 8 2022
Statut: ppublish

Résumé

This study aimed to investigate the chemical composition of essential oils isolated from Acca sellowiana (feijoa) leaves and stems and elaborate on their relevance as natural anti-aging, coupled with molecular-docking studies. The isolated oils were analysed using gas chromatography-mass spectrometry analysis and investigated for inhibitory effects against acetylcholinesterase, β-secretase, collagenase, elastase and tyrosinase. Molecular-modelling study was performed using MOE-Dock program to evaluate binding interactions of major components with the above-mentioned targets. The leaf oil revealed the predominance of caryophyllene oxide (24.3 %), linalool (7.9 %), and spathulenol (6.6 %), while the stem oil was presented by caryophyllene oxide (38.1 %), α-zingiberene (10.1 %) and humulene oxide II (6.0 %). The stem oil expressed superior inhibitory activities against acetylcholinesterase (IC

Identifiants

pubmed: 35938449
doi: 10.1002/cbdv.202200272
doi:

Substances chimiques

Acyclic Monoterpenes 0
Monocyclic Sesquiterpenes 0
Oils, Volatile 0
Oxides 0
Polycyclic Sesquiterpenes 0
Sesquiterpenes 0
Terpenes 0
cadinol 0
spathulenol 7XV9L96SJJ
zingiberene 8XOC63EI5F
linalool D81QY6I88E
Monophenol Monooxygenase EC 1.14.18.1
Acetylcholinesterase EC 3.1.1.7
Amyloid Precursor Protein Secretases EC 3.4.-
Pancreatic Elastase EC 3.4.21.36
caryophyllene oxide S2XU9K448U

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202200272

Subventions

Organisme : Deanship of Scientific Research at King Khalid University
ID : R.G.P.2/233/43

Informations de copyright

© 2022 Wiley-VHCA AG, Zurich, Switzerland.

Références

F. Ramírez, J. Kallarackal, ‘Feijoa [Acca sellowiana (O. Berg) Burret] pollination: a review’, Sci. Hortic. 2017, 226, 333-341.
Y. Peng, K. S. Bishop, S. Y. Quek, ‘Extraction Optimization, Antioxidant Capacity and Phenolic Profiling of Extracts from Flesh, Peel and Whole Fruit of New Zealand Grown Feijoa Cultivars’, Antioxidants 2019, 8.
R. J. Weston, ‘Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): A review’, Food Chem. 2010, 121, 923-926.
F. Zhu, ‘Chemical and biological properties of feijoa (Acca sellowiana)’, Trends Food Sci. Technol. 2018, 81, 121-131.
D. Sun-Waterhouse, ‘The development of fruit-based functional foods targeting the health and wellness market: a review’, Int. J. Food Sci. 2011, 46, 899-920.
H. Aoyama, H. Sakagami, T. Hatano, ‘Three new flavonoids, proanthocyanidin, and accompanying phenolic constituents from Feijoa sellowiana’, Biosci. Biotechnol. Biochem. 2018, 82, 31-41.
H. Martin, E. J. Burgess, W. A. Smith, T. K. McGhie, J. M. Cooney, R. C. Lunken, E. de Guzman, T. Trower, N. B. Perry, ‘JAK2 and AMP-kinase inhibition in vitro by food extracts, fractions and purified phytochemicals’, Food Funct. 2015, 6, 305-312.
M. S. Pasquariello, F. Mastrobuoni, D. Di Patre, L. Zampella, L. R. Capuano, M. Scortichini, M. Petriccione, ‘Agronomic, nutraceutical and molecular variability of feijoa (Acca sellowiana (O. Berg) Burret) germplasm’, Sci. Hortic. 2015, 191, 1-9.
E. A. Abdelghffar, N. M. Mostafa, H. A. El-Nashar, O. A. Eldahshan, A. N. B. Singab, ‘Chilean pepper (Schinus polygamus) ameliorates the adverse effects of hyperglycaemia/dyslipidaemia in high fat diet/streptozotocin-induced type 2 diabetic rat model’, Ind. Crops Prod. 2022, 183, 114953.
D. Sun-Waterhouse, W. Wang, G. I. Waterhouse, S. S. Wadhwa, ‘Utilisation potential of feijoa fruit wastes as ingredients for functional foods’, Food Bioproc. Tech. 2013, 6, 3441-3455.
N. Ibrahim, A. Y. Moussa, ‘A comparative volatilomic characterization of Florence fennel from different locations: antiviral prospects’, Food Funct. 2021, 12, 1498-1515.
C. G. Ballard, J. T. O′Brien, K. Reichelt, E. K. Perry, ‘Aromatherapy as a safe and effective treatment for the management of agitation in severe dementia: the results of a double-blind, placebo-controlled trial with Melissa’, J. Clin. Psychiatry. 2002, 63, 553-558.
O. E. El-Shawi, H. A. El-Nashar, S. S. Abd El-Rahman, O. A. Eldahshan, A. N. B. Singab, ‘Protective effect of Acrocarpus fraxinifolius Extract against Hepatic Fibrosis Induced by Gamma Irradiation and Carbon Tetrachloride in Albino Rats’, Int. J. Radiat. Biol. 2022, 1-15.
I. Liguori, G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, G. Gargiulo, G. Testa, F. Cacciatore, D. Bonaduce, P. Abete, ‘Oxidative stress, aging, and diseases’, Clin. Interventions Aging 2018, 13, 757-772.
R. L. Nussbaum, C. E. Ellis, ‘Alzheimer's disease and Parkinson's disease’, N. Engl. J. Med. 2003, 348, 1356-1364.
G. Dumitru, H. A. S. El-Nashar, N. M. Mostafa, O. A. Eldahshan, R. S. Boiangiu, E. Todirascu-Ciornea, L. Hritcu, A. N. B. Singab, ‘Agathisflavone isolated from Schinus polygamus (Cav.) Cabrera leaves prevents scopolamine-induced memory impairment and brain oxidative stress in zebrafish (Danio rerio)’, Phytomedicine 2019, 58, 152889.
H. A. S. El-Nashar, W. M. Eldehna, S. T. Al-Rashood, A. Alharbi, R. O. Eskandrani, S. H. Aly, ‘GC/MS Analysis of Essential Oil and Enzyme Inhibitory Activities of Syzygium cumini (Pamposia) Grown in Egypt: Chemical Characterization and Molecular Docking Studies’, Molecules 2021, 26.
H. Kawamoto, F. Takeshita, K. Murata, ‘Inhibitory Effects of Essential Oil Extracts From Panax Plants Against β-Secretase, Cholinesterase, and Amyloid Aggregation’, Nat. Prod. Commun. 2019, 14, 1934578X19881549.
M. Miyazawa, H. Nakahashi, A. Usami, N. Matsuda, ‘Chemical composition, aroma evaluation, and inhibitory activity towards acetylcholinesterase of essential oils from Gynura bicolor DC’, J. Nat. Med. 2016, 70, 282-289.
M. Ayaz, A. Sadiq, M. Junaid, F. Ullah, F. Subhan, J. Ahmed, ‘Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants’, Front. Aging Neurosci. 2017, 9, 168.
J. Martel, D. M. Ojcius, Y. F. Ko, C. J. Chang, J. D. Young, ‘Antiaging effects of bioactive molecules isolated from plants and fungi’, Med. Res. Rev. 2019, 39, 1515-1552.
T. Aburjai, F. M. Natsheh, ‘Plants used in cosmetics’, Phytother. Res. 2003, 17, 987-1000.
A. E. Altyar, M. L. Ashour, F. S. Youssef, ‘Premna odorata: Seasonal metabolic variation in the essential oil composition of its leaf and verification of its anti-ageing potential via In vitro assays and molecular modelling’, Biomol. Eng. 2020, 10, 879.
L. Robert, ‘Extracellular matrix and aging: a review of mechanisms and interventions’, Cosmet. Toiletries 2001, 116, 61-70.
C. T. Chang, W. L. Chang, J. C. Hsu, Y. Shih, S. T. Chou, ‘Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil’, Bot. Stud. 2013, 54, 10.
M. Chatatikun, A. Chiabchalard, ‘Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity’, BMC Complementary Altern. Med. 2017, 17, 487.
A. E. Edris, ‘Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review’, Phytother. Res. 2007, 21, 308-323.
D. Fraternale, G. Flamini, R. Ascrizzi, ‘In vitro anticollagenase and antielastase activities of essential oil of Helichrysum italicum subsp. italicum (Roth) G. Don’, J. Med. Food 2019, 22, 1041-1046.
M. Elfarnini, A. Abdel-hamid, M. Achir, J. Jamaleddine, M. Blaghen, ‘Volatile compounds in the skin essential oil of Moroccan Feijoa sellowiana’, European J. Med. Plants 2018, 23, 1-7.
H. Mosbah, H. Louati, M. A. Boujbiha, H. Chahdoura, M. Snoussi, G. Flamini, R. Ascrizzi, A. Bouslema, L. Achour, B. Selmi, ‘Phytochemical characterization, antioxidant, antimicrobial and pharmacological activities of Feijoa sellowiana leaves growing in Tunisia’, Ind. Crops Prod. 2018, 112, 521-531.
X. Fernandez, A.-M. Loiseau, S. Poulain, L. Lizzani-Cuvelier, Y. Monnier, ‘Chemical composition of the essential oil from Feijoa (Feijoa sellowiana Berg.) peel’, J. Essent. Oil Res. 2004, 16, 274-275.
M. V. Hendges, M. A. Moreira, C. A. Steffens, C. V. Talamini do Amarante, ‘Aromatic profile of Feijoa (Feijoa sellowiana) fruit in protected cultivation, at harvest and after cold storage’, Sci. Hortic. 2022, 293, 110691.
S. Karakaya, S. V. Yilmaz, Ö. Özdemir, M. Koca, N. M. Pınar, B. Demirci, K. Yıldırım, O. Sytar, H. Turkez, K. H. C. Baser, ‘A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm. (Lamiaceae)’, J. Essent. Oil Res. 2020, 32, 512-525.
X. L. Bu, P. P. N. Rao, Y. J. Wang, ‘Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery’, Mol. Neurobiol. 2016, 53, 3565-3575.
R. Videira, P. Castanheira, M. Grãos, L. Salgueiro, C. Faro, C. Cavaleiro, ‘A necrodane monoterpenoid from Lavandula luisieri essential oil as a cell-permeable inhibitor of BACE-1, the β-secretase in Alzheimer's disease’, Flavour Fragrance J. 2013, 28, 380-388.
S. Matsumura, K. Murata, N. Zaima, Y. Yoshioka, M. Morimoto, H. Kugo, A. Yamamoto, T. Moriyama, H. Matsuda, ‘Inhibitory Activities of Essential Oil Obtained from Turmeric and Its Constituents against β-Secretase’, Nat. Prod. Commun. 2016, 11, 1785-1788.
A. E. Altyar, M. L. Ashour, F. S. Youssef, ‘Premna odorata: Seasonal Metabolic Variation in the Essential Oil Composition of Its Leaf and Verification of Its Anti-Ageing Potential via In vitro Assays and Molecular Modelling’, Biomol. Eng. 2020, 10.
E. Deveci, G. Tel-Çayan, M. E. Duru, ‘Essential oil composition, antioxidant, anticholinesterase and anti-tyrosinase activities of two Turkish plant species: Ferula elaeochytris and Sideritis stricta’, Nat. Prod. Commun. 2018, 13, 1934578X1801300130.
F. Qorina, A. Arsianti, Q. Fithrotunnisa, N. Tejaputri, N. N. Azizah, R. Putrianingsih, ‘Cytotoxicity of Soursop Leaves (Annona muricata) against Cervical HeLa Cancer Cells’, Pharmacog. J. 2020, 12.
M. S. Refaey, R. A. Abdelhamid, H. Elimam, Y. Elshaier, A. A. Ali, M. A. A. Orabi, ‘Bioactive constituents from Thunbergia erecta as potential anticholinesterase and anti-ageing agents: Experimental and in silico studies’, Bioorg. Chem. 2021, 108, 104643.
C. E. Moussa, ‘Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer's disease’, Expert Opin. Invest. Drugs 2017, 26, 1131-1136.
C.-H. Eun, M.-S. Kang, I.-J. Kim, ‘Elastase/Collagenase Inhibition Compositions of Citrus unshiu and Its Association with Phenolic Content and Anti-Oxidant Activity’, Appl. Sci. 2020, 10, 4838.
N. Azmi, P. Hashim, D. M. Hashim, N. Halimoon, N. M. Majid, ‘Anti-elastase, anti-tyrosinase and matrix metalloproteinase-1 inhibitory activity of earthworm extracts as potential new anti-aging agent’, Asian Pac. J. Trop. Med. 2014, 4, S348-352.
Y. S. Bae-Harboe, H. Y. Park, ‘Tyrosinase: a central regulatory protein for cutaneous pigmentation’, J. Invest. Dermatol. 2012, 132, 2678-2680.
N. N. Silva, J. R. Silva, C. N. Alves, E. H. Andrade, J. K. da Silva, J. G. Maia, ‘Acetylcholinesterase inhibitory activity and molecular docking study of 1-nitro-2-phenylethane, the main constituent of Aniba canelilla essential oil’, Chem. Biol. Drug Des. 2014, 84, 192-198.
J. K. R. da Silva, L. Pinto, R. Burbano, R. C. Montenegro, E. F. Guimarães, E. H. A. Andrade, J. G. S. Maia, ‘Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities’, Ind. Crops Prod. 2014, 58, 55-60.
S. G. Silva, R. A. da Costa, M. S. de Oliveira, J. N. da Cruz, P. L. B. Figueiredo, D. Brasil, L. D. Nascimento, A. M. J. Chaves Neto, R. N. de Carvalho Junior, E. H. A. Andrade, ‘Chemical profile of Lippia thymoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations’, PLoS One 2019, 14, e0213393.
G. Kryger, I. Silman, J. L. Sussman, ‘Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs’, Structure (London, England: 1993) 1999, 7, 297-307.
J. Boström, J. R. Greenwood, J. Gottfries, ‘Assessing the performance of OMEGA with respect to retrieving bioactive conformations’, J. Mol. Graph. Model 2003, 21, 449-462.
M. A. Ullah, F. T. Johora, B. Sarkar, Y. Araf, N. Ahmed, A. N. Nahar, T. Akter, ‘Computer-assisted evaluation of plant-derived β-secretase inhibitors in Alzheimer's disease’, Egypt. J. Med. Hum. Genet. 2021, 22, 1-15.
K. Zakiah, E. Anwar, T. Nurhayati, ‘In vitro evaluation of antioxidant activity and anti-collagenase activity of Thalassia Hempricii as a potent ingredients for anti-wrinkle cosmetics’, Pharmacogenomics J. 2018, 10.
N. Zofia, Z. D. Martyna, Z. Aleksandra, B. Tomasz, ‘Comparison of the Antiaging and Protective Properties of Plants from the Apiaceae Family’, Oxid. Met. 2020, 2020, 5307614.
B. Deri, M. Kanteev, M. Goldfeder, D. Lecina, V. Guallar, N. Adir, A. Fishman, ‘The unravelling of the complex pattern of tyrosinase inhibition’, Sci. Rep. 2016, 6, 1-10.
F. Haghbeen, N. Ghorbanian, G. Hajatpour, J. Z. Amirzakaria, H. Eshghi, K. Haghbeen, ‘Introducing a potential lead structure for the synthesis of more specific inhibitors of tyrosinases and catechol oxidases’, J. Iran. Chem. Soc. 2021, 19, 1-12.
E. Todirascu-Ciornea, H. A. S. El-Nashar, N. M. Mostafa, O. A. Eldahshan, R. S. Boiangiu, G. Dumitru, L. Hritcu, A. N. B. Singab, ‘Schinus terebinthifolius Essential Oil Attenuates Scopolamine-Induced Memory Deficits via Cholinergic Modulation and Antioxidant Properties in a Zebrafish Model’, Evid.-Based Complement. Altern. Med. 2019, 2019, 5256781.
H. A. S. El-Nashar, N. M. Mostafa, M. A. El-Badry, O. A. Eldahshan, A. N. B. Singab, ‘Chemical composition, antimicrobial and cytotoxic activities of essential oils from Schinus polygamus (Cav.) cabrera leaf and bark grown in Egypt’, Nat. Prod. Res. 2020, 35, 5369-5372.
I. Kivrak, M. E. Duru, M. Öztürk, N. Mercan, M. Harmandar, G. Topçu, ‘Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia’, Food Chem. 2009, 116, 470-479.
P. R. Bernstein, P. D. Edwards, J. C. Williams, ‘2 Inhibitors of human leukocyte elastase’, Prog. Med. Chem. 1994, 31, 59-120.
T. Mosmann, ‘Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays’, J. Immunol. Methods 1983, 65, 55-63.
M. Congreve, D. Aharony, J. Albert, O. Callaghan, J. Campbell, R. A. Carr, G. Chessari, S. Cowan, P. D. Edwards, M. Frederickson, R. McMenamin, C. W. Murray, et al., ‘Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of beta-secretase’, J. Med. Chem. 2007, 50, 1124-1132.
T. Kohno, H. Hochigai, E. Yamashita, T. Tsukihara, M. Kanaoka, ‘Crystal structures of the catalytic domain of human stromelysin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453’, Biochem. Biophys. Res. Commun. 2006, 344, 315-322.
I. Nakanishi, T. Kinoshita, A. Sato, T. Tada, ‘Structure of porcine pancreatic elastase complexed with FR901277, a novel macrocyclic inhibitor of elastases, at 1.6 A resolution’, Biopolymers 2000, 53, 434-445.
M. Sendovski, M. Kanteev, V. Shuster, N. Adir, A. Fisherman, ‘Crystal structure of tyrosinase from Bacillus magaterium in complex with inhibitor kojic acid’, J. Mol. Biol. 2011, 405, 227-237.
E. Mashiach, R. Nussinov, H. J. Wolfson, ‘FiberDock: Flexible induced-fit backbone refinement in molecular docking’, Proteins 2010, 78, 1503-1519.
D. D. Boehr, R. Nussinov, P. E. Wright, ‘The role of dynamic conformational ensembles in biomolecular recognition’, Nat. Chem. Biol. 2009, 5, 789-796.
U. Kalathiya, M. Padariya, M. Baginski, ‘Structural, functional, and stability change predictions in human telomerase upon specific point mutations’, Sci. Rep. 2019, 9, 8707.
M. T. ul Qamar, S. Kiran, U. A. Ashfaq, M. R. Javed, F. Anwar, M. A. Ali, A. u H Gilani, ‘Discovery of novel dengue NS2B/NS3 protease inhibitors using pharmacophore modeling and molecular docking based virtual screening of the zinc database’, Int. J. Pharmacol. 2016, 12, 621-632.

Auteurs

Heba A S El-Nashar (HAS)

Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.
Center for Drug Discovery Research and Development, Ain Shams University, Egypt.

Mai Adel (M)

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.

Mohamed El-Shazly (M)

Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.
Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, 11835, Egypt.

Ibrahim S Yahia (IS)

Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia.
Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia.
Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Lab., Physics Department, Faculty of Education, Ain Shams University, Roxy, 11757, Cairo, Egypt.

Hamdy S El Sheshtawy (HS)

Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafr-El-Sheikh, Egypt.

Adel A Almalki (AA)

Australian Laboratories Services Arabia Co. -, Minerals Division, Jeddah, Industrial Area 1, Phase IV, P.O. 2696, Saudi Arabia.

Nehal Ibrahim (N)

Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH