Fibronectin Modulates the Expression of miRNAs in Prostate Cancer Cell Lines.
LNCaP
PC-3
PI3K-AKT pathway
RNA-seq
extracellular matrix
fibronectin
Journal
Frontiers in veterinary science
ISSN: 2297-1769
Titre abrégé: Front Vet Sci
Pays: Switzerland
ID NLM: 101666658
Informations de publication
Date de publication:
2022
2022
Historique:
received:
20
02
2022
accepted:
08
06
2022
entrez:
28
7
2022
pubmed:
29
7
2022
medline:
29
7
2022
Statut:
epublish
Résumé
Prostate cancer (PCa) is a significant cause of cancer-related deaths among men and companion animals, such as dogs. However, despite its high mortality and incidence rates, the molecular mechanisms underlying this disease remain to be fully elucidated. Among the many factors involved in prostate carcinogenesis, the extracellular matrix (ECM) plays a crucial role. This ECM in the prostate is composed mainly of collagen fibers, reticular fibers, elastic fibers, proteoglycans and glycoproteins, such as fibronectin. Fibronectin is a glycoprotein whose dysregulation has been implicated in the development of multiple types of cancer, and it has been associated with cell migration, invasion, and metastasis. Furthermore, our research group has previously shown that fibronectin induces transcriptional changes by modulating the expression of protein coding genes in LNCaP cells. However, potential changes at the post-transcriptional level are still not well understood. This study investigated the impact of exposure to fibronectin on the expression of a key class of regulatory RNAs, the microRNAs (miRNAs), in prostate cancer cell lines LNCaP and PC-3. Five mammalian miRNAs (miR-21, miR-29b, miR-125b, miR-221, and miR-222) were differentially expressed after fibronectin exposure in prostate cell lines. The expression profile of hundreds of mRNAs predicted to be targeted by these miRNAs was analyzed using publicly available RNA-Sequencing data (GSE64025, GSE68645, GSE29155). Also, protein-protein interaction networks and enrichment analysis were performed to gain insights into miRNA biological functions. Altogether, these functional analyzes revealed that fibronectin exposure impacts the expression of miRNAs potentially involved in PCa causing changes in critical signaling pathways such as PI3K-AKT, and response to cell division, death, proliferation, and migration. The relationship here demonstrated between fibronectin exposure and altered miRNA expression improves the comprehension of PCa in both men and other animals, such as dogs, which naturally develop prostate cancer.
Identifiants
pubmed: 35898539
doi: 10.3389/fvets.2022.879997
pmc: PMC9310065
doi:
Types de publication
Journal Article
Langues
eng
Pagination
879997Informations de copyright
Copyright © 2022 Martinucci, Cucielo, Minatel, Cury, Caxali, Aal, Felisbino, Pinhal, Carvalho and Delella.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Cancer. 2013 May 09;4(5):350-7
pubmed: 23781281
Cancers (Basel). 2021 Apr 14;13(8):
pubmed: 33920045
J Vet Med Sci. 2017 Apr 5;79(4):719-725
pubmed: 28239051
Prostate. 2001 May 15;47(3):194-204
pubmed: 11351349
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Nature. 2000 Nov 16;408(6810):307-10
pubmed: 11099028
Nat Cell Biol. 2001 Jun;3(6):552-8
pubmed: 11389439
Cancers (Basel). 2021 Sep 06;13(17):
pubmed: 34503302
Oncogene. 2005 Feb 3;24(6):1053-65
pubmed: 15558012
Mol Neurobiol. 2016 Jan;53(1):577-583
pubmed: 25502291
Carcinogenesis. 2015 Aug;36(8):858-66
pubmed: 25969144
Cancers (Basel). 2020 Mar 18;12(3):
pubmed: 32197468
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Mol Cancer. 2010 Jan 21;9:12
pubmed: 20092645
Mol Cell. 2001 Mar;7(3):673-82
pubmed: 11463391
Br J Cancer. 2008 Oct 21;99(8):1269-75
pubmed: 18854825
Acta Biochim Biophys Sin (Shanghai). 2012 Aug;44(8):685-91
pubmed: 22843172
BMC Cancer. 2010 Sep 22;10:503
pubmed: 20860816
Prostate. 2014 Sep;74(13):1320-34
pubmed: 25053345
Int J Exp Pathol. 2014 Jun;95(3):158-80
pubmed: 24761792
Int J Oncol. 2014 Nov;45(5):1793-801
pubmed: 25120209
Vet J. 2009 May;180(2):149-62
pubmed: 18786842
Cells. 2020 Jan 15;9(1):
pubmed: 31952362
Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52
pubmed: 25352553
Nucleic Acids Res. 2020 Jan 8;48(D1):D148-D154
pubmed: 31647101
Res Vet Sci. 2016 Jun;106:56-61
pubmed: 27234536
Cancer Res. 2009 Apr 15;69(8):3356-63
pubmed: 19351832
Cells. 2019 Dec 20;9(1):
pubmed: 31861892
Biochem Biophys Res Commun. 2013 Jan 25;430(4):1319-21
pubmed: 23261429
Nucleic Acids Res. 2018 Jul 2;46(W1):W537-W544
pubmed: 29790989
Curr Drug Targets. 2010 Jun;11(6):699-707
pubmed: 20298153
Sci Signal. 2015 Mar 17;8(368):re2
pubmed: 25783159
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Genome Biol. 2014;15(12):550
pubmed: 25516281
Adv Drug Deliv Rev. 2016 Feb 1;97:4-27
pubmed: 26562801
Science. 1999 Apr 2;284(5411):156-9
pubmed: 10102818
Genes Dev. 1997 Mar 15;11(6):714-25
pubmed: 9087426
Semin Oncol. 2019 Jun;46(3):284-290
pubmed: 31488338
Reprod Domest Anim. 2019 Jun;54(6):815-822
pubmed: 30974484
J Biol Chem. 2007 Aug 10;282(32):23716-24
pubmed: 17569667
J Cell Biochem. 2004 Jan 1;91(1):36-40
pubmed: 14689579
J Biol Chem. 2015 Jan 30;290(5):2759-68
pubmed: 25527506
Int J Cancer. 2021 Apr 5;:
pubmed: 33818764
J Hematol Oncol. 2013 Jan 15;6:6
pubmed: 23321005
Cancer Res. 1983 Apr;43(4):1809-18
pubmed: 6831420
Prostate. 2017 Jan;77(1):72-81
pubmed: 27604827
J Pathol. 2017 Oct;243(2):208-219
pubmed: 28707808
Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19983-8
pubmed: 18056640
Biochem Biophys Res Commun. 2011 Dec 9;416(1-2):31-8
pubmed: 22093834
Adv Pharm Bull. 2019 Aug;9(3):490-496
pubmed: 31592099
Cancer Lett. 2013 Sep 1;337(2):226-36
pubmed: 23684551
Invest Urol. 1979 Jul;17(1):16-23
pubmed: 447482
Mol Cancer Ther. 2017 May;16(5):805-818
pubmed: 28450422
Genet Mol Res. 2017 Feb 23;16(1):
pubmed: 28252164
Nat Rev Genet. 2010 Sep;11(9):597-610
pubmed: 20661255
Signal Transduct Target Ther. 2016 Jan 28;1:15004
pubmed: 29263891
Mol Med. 1996 Jul;2(4):439-51
pubmed: 8827714
Asian Pac J Cancer Prev. 2019 Nov 01;20(11):3341-3351
pubmed: 31759358
Nature. 2004 Sep 16;431(7006):350-5
pubmed: 15372042
Oncoscience. 2015 Apr 17;2(4):362-72
pubmed: 26097870
Mol Ther Oncolytics. 2018 Dec 31;12:173-194
pubmed: 30788428
Int J Cancer. 2006 Mar 15;118(6):1331-9
pubmed: 16381025
BMC Cancer. 2010 Jul 09;10:364
pubmed: 20615257
Gene. 2000 Jan 25;242(1-2):15-29
pubmed: 10721693
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Oncoscience. 2015 Sep 01;2(8):703-15
pubmed: 26425662
Saudi Pharm J. 2018 Feb;26(2):191-197
pubmed: 30166915
Nucleic Acids Res. 2022 Jan 7;50(D1):D988-D995
pubmed: 34791404
Acta Histochem. 2015 Jan;117(1):4-13
pubmed: 25466989
Genome Res. 2011 Jul;21(7):1028-41
pubmed: 21724842
Cell Death Differ. 2014 Feb;21(2):206-15
pubmed: 24162659
Oncotarget. 2015 Sep 15;6(27):23533-47
pubmed: 26124181
Genome Biol. 2007;8(9):R183
pubmed: 17784955
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8438-43
pubmed: 17494760
Cell. 2004 Jan 23;116(2):281-97
pubmed: 14744438
Clin Sci (Lond). 2017 Feb 1;131(3):197-210
pubmed: 28057891
Med Oncol. 2019 Apr 1;36(5):43
pubmed: 30937635
BMC Mol Biol. 2006 Jan 31;7:3
pubmed: 16448564
Mol Cell Biochem. 2019 Jan;451(1-2):131-138
pubmed: 29961211
Acta Biomater. 2014 Apr;10(4):1524-31
pubmed: 23978411