Discovery of potent and selective HER2 inhibitors with efficacy against HER2 exon 20 insertion-driven tumors, which preserve wild-type EGFR signaling.


Journal

Nature cancer
ISSN: 2662-1347
Titre abrégé: Nat Cancer
Pays: England
ID NLM: 101761119

Informations de publication

Date de publication:
07 2022
Historique:
received: 27 07 2021
accepted: 16 06 2022
entrez: 26 7 2022
pubmed: 27 7 2022
medline: 29 7 2022
Statut: ppublish

Résumé

Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.

Identifiants

pubmed: 35883003
doi: 10.1038/s43018-022-00412-y
pii: 10.1038/s43018-022-00412-y
doi:

Substances chimiques

Protein Kinase Inhibitors 0
EGFR protein, human EC 2.7.10.1
ERBB2 protein, human EC 2.7.10.1
ErbB Receptors EC 2.7.10.1
Receptor, ErbB-2 EC 2.7.10.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

821-836

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Citri, A. & Yarden, Y. EGF–ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505–516 (2006).
pubmed: 16829981 doi: 10.1038/nrm1962
Hynes, N. E. & MacDonald, G. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol. 21, 177–184 (2009).
pubmed: 19208461 doi: 10.1016/j.ceb.2008.12.010
Roskoski, R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 79, 34–74 (2014).
pubmed: 24269963 doi: 10.1016/j.phrs.2013.11.002
Wang, Z. ErbB receptor signaling, methods and protocols. Methods Mol. Biol. 1652, 3–35 (2017).
pubmed: 28791631 doi: 10.1007/978-1-4939-7219-7_1
Yasuda, H., Kobayashi, S. & Costa, D. B. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 13, e23–e31 (2012).
pubmed: 21764376 doi: 10.1016/S1470-2045(11)70129-2
Yan, M., Parker, B. A., Schwab, R. & Kurzrock, R. HER2 aberrations in cancer: Implications for therapy. Cancer Treat. Rev. 40, 770–780 (2014).
pubmed: 24656976 doi: 10.1016/j.ctrv.2014.02.008
Stephens, P. et al. Intragenic ERBB2 kinase mutations in tumours. Nature 431, 525–526 (2004).
pubmed: 15457249 doi: 10.1038/431525b
Roy, K. et al. Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc. Natl Acad. Sci. USA 104, 8131–8136 (2007).
pubmed: 17483467 pmcid: 1876583 doi: 10.1073/pnas.0702157104
Mei, L. & Nave, K.-A. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 83, 27–49 (2014).
pubmed: 24991953 pmcid: 4189115 doi: 10.1016/j.neuron.2014.06.007
Barok, M., Joensuu, H. & Isola, J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 16, 209 (2014).
pubmed: 24887180 pmcid: 4058749 doi: 10.1186/bcr3621
Baselga, J. et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366, 109–119 (2012).
pubmed: 22149875 doi: 10.1056/NEJMoa1113216
Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372, 724–734 (2015).
pubmed: 25693012 pmcid: 5584549 doi: 10.1056/NEJMoa1413513
Franklin, M. C. et al. Insights into ErbB signaling from the structure of the ErbB2–pertuzumab complex. Cancer Cell 5, 317–328 (2004).
pubmed: 15093539 doi: 10.1016/S1535-6108(04)00083-2
Gianni, L. et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 13, 25–32 (2012).
pubmed: 22153890 doi: 10.1016/S1470-2045(11)70336-9
Phillips, G. D. L. et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008).
doi: 10.1158/0008-5472.CAN-08-1776
Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012).
pubmed: 23020162 pmcid: 5125250 doi: 10.1056/NEJMoa1209124
Nguyen, X., Hooper, M., Borlagdan, J. P. & Palumbo, A. A review of Fam-trastuzumab deruxtecan-NXKI in HER2-positive breast cancer. Ann. Pharmacother. https://doi.org/10.1177/1060028021998320 (2021).
Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).
pubmed: 18408761 pmcid: 2748240 doi: 10.1038/onc.2008.109
Geyer, C. E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355, 2733–2743 (2006).
pubmed: 17192538 doi: 10.1056/NEJMoa064320
Burstein, H. J. et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J. Clin. Oncol. 28, 1301–1307 (2010).
pubmed: 20142587 doi: 10.1200/JCO.2009.25.8707
Murthy, R. K. et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl. J. Med. 382, 597–609 (2019).
pubmed: 31825569 doi: 10.1056/NEJMoa1914609
Wang, S. E. et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10, 25–38 (2006).
pubmed: 16843263 doi: 10.1016/j.ccr.2006.05.023
Cocco, E., Lopez, S., Santin, A. D. & Scaltriti, M. Prevalence and role of HER2 mutations in cancer. Pharmacol. Therapeut. 199, 188–196 (2019).
doi: 10.1016/j.pharmthera.2019.03.010
Minami, Y. et al. The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272. Oncogene 26, 5023–5027 (2007).
pubmed: 17311002 doi: 10.1038/sj.onc.1210292
Connell, C. M. & Doherty, G. J. Activating HER2 mutations as emerging targets in multiple solid cancers. ESMO Open 2, e000279 (2017).
pubmed: 29209536 pmcid: 5708307 doi: 10.1136/esmoopen-2017-000279
Perera, S. A. et al. HER2YVMA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc. Natl Acad. Sci. USA 106, 474–479 (2009).
pubmed: 19122144 pmcid: 2626727 doi: 10.1073/pnas.0808930106
Shih, A. J., Telesco, S. E. & Radhakrishnan, R. Analysis of somatic mutations in cancer: molecular mechanisms of activation in the ErbB family of receptor tyrosine kinases. Cancers 3, 1195–1231 (2011).
pubmed: 21701703 pmcid: 3119571 doi: 10.3390/cancers3011195
Bertelsen, V. & Stang, E. The mysterious ways of ErbB2/HER2 trafficking. Membranes 4, 424–446 (2014).
pubmed: 25102001 pmcid: 4194043 doi: 10.3390/membranes4030424
Shi, Y. & Wang, M. Afatinib as first‐line treatment for advanced lung adenocarcinoma patients harboring HER2 mutation: a case report and review of the literature. Thorac. Cancer 9, 1788–1794 (2018).
pubmed: 30379401 pmcid: 6275816 doi: 10.1111/1759-7714.12906
Lai, W.-C. V. et al. Afatinib in patients with metastatic HER2 -mutant lung cancers: an international multicenter study. J. Clin. Oncol. 35, 9071–9071 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.9071
Zhou, J. et al. Clinical outcomes of patients with HER2-mutant advanced lung cancer: chemotherapies versus HER2-directed therapies. Ther. Adv. Med. Oncol. 12, 1758835920936090 (2020).
pubmed: 32647540 pmcid: 7325548 doi: 10.1177/1758835920936090
Li, B. T. et al. HER2 insertion YVMA mutant lung cancer: long natural history and response to afatinib. Lung Cancer 90, 617–619 (2015).
pubmed: 26559459 doi: 10.1016/j.lungcan.2015.10.025
Liu, S. et al. Targeting HER2 aberrations in non-small cell lung cancer with osimertinib. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.ccr-17-1875 (2018).
Lynette, A. S. & Ian, C. Measuring and interpreting the selectivity of protein kinase inhibitors. J. Chem. Biol. 2, 131 (2009).
doi: 10.1007/s12154-009-0023-9
Roskoski, R. Orally effective FDA-approved protein kinase targeted covalent inhibitors (TCIs). Pharmacol. Res. 165, 105422 (2021).
pubmed: 33434619 doi: 10.1016/j.phrs.2021.105422
Qingsong, L. et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. https://doi.org/10.1016/j.chembiol.2012.12.006 (2013).
Tomoyasu, I. et al. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem. 54, 8030 (2011).
doi: 10.1021/jm2008634
Kathleen, A. et al. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J. Biol. Chem. 286, 18756 (2011).
doi: 10.1074/jbc.M110.206193
Robichaux, J. P. et al. Pan-cancer landscape and analysis of ERBB2 mutations identifies poziotinib as a clinically active inhibitor and enhancer of T-DM1 activity. Cancer Cell 36, 444–457 (2019).
pubmed: 31588020 pmcid: 6944069 doi: 10.1016/j.ccell.2019.09.001
Mohr, S. E., Smith, J. A., Shamu, C. E., Neumüller, R. A. & Perrimon, N. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Bio. 15, 591–600 (2014).
doi: 10.1038/nrm3860
Su, X., Lin, Z. & Lin, H. The biosynthesis and biological function of diphthamide. Crit. Rev. Biochem. Mol. 48, 515–521 (2013).
doi: 10.3109/10409238.2013.831023
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K.-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).
pubmed: 12172553 doi: 10.1038/ncb839
Inoki, K., Zhu, T. & Guan, K.-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).
pubmed: 14651849 doi: 10.1016/S0092-8674(03)00929-2
Buttitta, F. et al. Mutational analysis of the HER2 gene in lung tumors from Caucasian patients: mutations are mainly present in adenocarcinomas with bronchioloalveolar features. Int. J. Cancer 119, 2586–2591 (2006).
pubmed: 16988931 doi: 10.1002/ijc.22143
Liu, Z. et al. Clinical characterization of ERBB2 exon 20 insertions and heterogeneity of outcomes responding to afatinib in Chinese lung cancer patients. Oncotargets Ther. 11, 7323–7331 (2018).
doi: 10.2147/OTT.S173391
Zheng, Y.-B. et al. Inhibitor response to HER2 G776YVMA in-frame insertion in HER2-positive breast cancer. Cancer Invest. 34, 123–129 (2016).
pubmed: 26934461 doi: 10.3109/07357907.2015.1118113
Prelaj, A. et al. Poziotinib for EGFR and HER2 exon 20 insertion mutation in advanced NSCLC: results from the expanded access program. Eur. J. Cancer https://doi.org/10.1016/j.ejca.2021.02.038 (2021).
Le, X. et al. Poziotinib in non-small-cell lung cancer harboring HER2 exon 20 insertion mutations after prior therapies: ZENITH20-2 trial. J. Clin. Oncol. https://doi.org/10.1200/jco.21.01323 (2021).
Ramalingam, S. S. et al. Overall Survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50 (2020).
pubmed: 31751012 doi: 10.1056/NEJMoa1913662
Soria, J.-C. et al. Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).
pubmed: 29151359 doi: 10.1056/NEJMoa1713137
Yadav, B., Wennerberg, K., Aittokallio, T. & Tang, J. Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput. Struct. Biotechnol. J. 13, 504–513 (2015).
pubmed: 26949479 pmcid: 4759128 doi: 10.1016/j.csbj.2015.09.001
Köferle, A. et al. Interrogation of cancer gene dependencies reveals paralog interactions of autosome and sex chromosome-encoded genes. Cell Rep. 39, 110636 (2022).
pubmed: 35417719 doi: 10.1016/j.celrep.2022.110636
Hörmann, A. et al. RIOK1 kinase activity is required for cell survival irrespective of MTAP status. Oncotarget 9, 28625–28637 (2018).
pubmed: 29983885 pmcid: 6033344 doi: 10.18632/oncotarget.25586
Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015).
pubmed: 25961408 pmcid: 4529991 doi: 10.1038/nbt.3235
Han, H. et al. Targeting HER2 exon 20 insertion-mutant lung adenocarcinoma with a novel tyrosine kinase inhibitor mobocertinib. Cancer Res. 81, 5311–5324 (2021).
pubmed: 34380634 pmcid: 8530969 doi: 10.1158/0008-5472.CAN-21-1526
Hofmann, M. H. et al. BI-3406, a potent and selective SOS1–KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 11, 142–157 (2021).
pubmed: 32816843 doi: 10.1158/2159-8290.CD-20-0142
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
pubmed: 25476604 pmcid: 4290824 doi: 10.1186/s13059-014-0554-4

Auteurs

Birgit Wilding (B)

Boehringer Ingelheim RCV, Vienna, Austria. birgit.wilding@boehringer-ingelheim.com.

Dirk Scharn (D)

Boehringer Ingelheim RCV, Vienna, Austria.

Dietrich Böse (D)

Boehringer Ingelheim RCV, Vienna, Austria.

Anke Baum (A)

Boehringer Ingelheim RCV, Vienna, Austria.

Valeria Santoro (V)

Boehringer Ingelheim RCV, Vienna, Austria.

Paolo Chetta (P)

Boehringer Ingelheim RCV, Vienna, Austria.

Renate Schnitzer (R)

Boehringer Ingelheim RCV, Vienna, Austria.

Dana A Botesteanu (DA)

Boehringer Ingelheim RCV, Vienna, Austria.

Christoph Reiser (C)

Boehringer Ingelheim RCV, Vienna, Austria.

Stefan Kornigg (S)

Boehringer Ingelheim RCV, Vienna, Austria.

Petr Knesl (P)

Boehringer Ingelheim RCV, Vienna, Austria.

Alexandra Hörmann (A)

Boehringer Ingelheim RCV, Vienna, Austria.

Anna Köferle (A)

Boehringer Ingelheim RCV, Vienna, Austria.

Maja Corcokovic (M)

Boehringer Ingelheim RCV, Vienna, Austria.

Simone Lieb (S)

Boehringer Ingelheim RCV, Vienna, Austria.

Guido Scholz (G)

Boehringer Ingelheim RCV, Vienna, Austria.

Jens Bruchhaus (J)

Boehringer Ingelheim RCV, Vienna, Austria.

Markus Spina (M)

Boehringer Ingelheim RCV, Vienna, Austria.

Josef Balla (J)

Boehringer Ingelheim RCV, Vienna, Austria.

Biljana Peric-Simov (B)

Boehringer Ingelheim RCV, Vienna, Austria.

Jasmin Zimmer (J)

Boehringer Ingelheim RCV, Vienna, Austria.

Sophie Mitzner (S)

Boehringer Ingelheim RCV, Vienna, Austria.

Thomas N Fett (TN)

Boehringer Ingelheim RCV, Vienna, Austria.

Alexandra Beran (A)

Boehringer Ingelheim RCV, Vienna, Austria.

Lyne Lamarre (L)

Boehringer Ingelheim RCV, Vienna, Austria.

Thomas Gerstberger (T)

Boehringer Ingelheim RCV, Vienna, Austria.

Daniel Gerlach (D)

Boehringer Ingelheim RCV, Vienna, Austria.

Markus Bauer (M)

Boehringer Ingelheim RCV, Vienna, Austria.

Andreas Bergner (A)

Boehringer Ingelheim RCV, Vienna, Austria.

Andreas Schlattl (A)

Boehringer Ingelheim RCV, Vienna, Austria.

Gerd Bader (G)

Boehringer Ingelheim RCV, Vienna, Austria.

Matthias Treu (M)

Boehringer Ingelheim RCV, Vienna, Austria.

Harald Engelhardt (H)

Boehringer Ingelheim RCV, Vienna, Austria.

Stephan Zahn (S)

Boehringer Ingelheim RCV, Vienna, Austria.

Julian E Fuchs (JE)

Boehringer Ingelheim RCV, Vienna, Austria.

Johannes Zuber (J)

Institute of Molecular Pathology (IMP), Vienna, Austria.
Medical University of Vienna, Vienna, Austria.

Peter Ettmayer (P)

Boehringer Ingelheim RCV, Vienna, Austria.

Mark Pearson (M)

Boehringer Ingelheim RCV, Vienna, Austria.

Mark Petronczki (M)

Boehringer Ingelheim RCV, Vienna, Austria.

Norbert Kraut (N)

Boehringer Ingelheim RCV, Vienna, Austria.

Darryl B McConnell (DB)

Boehringer Ingelheim RCV, Vienna, Austria.

Flavio Solca (F)

Boehringer Ingelheim RCV, Vienna, Austria. flavio.solca@boehringer-ingelheim.com.

Ralph A Neumüller (RA)

Boehringer Ingelheim RCV, Vienna, Austria. ralph.neumueller@boehringer-ingelheim.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH