Characterization of a novel thermostable phospholipase C from T. kodakarensis suitable for oil degumming.
Enzymatic degumming
Phosphatidylcholine phospholipase C
Thermococcus kodakarensis
Thermostable phospholipase C
Journal
Applied microbiology and biotechnology
ISSN: 1432-0614
Titre abrégé: Appl Microbiol Biotechnol
Pays: Germany
ID NLM: 8406612
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
21
02
2022
accepted:
13
07
2022
revised:
09
07
2022
pubmed:
20
7
2022
medline:
30
7
2022
entrez:
19
7
2022
Statut:
ppublish
Résumé
The implementation of cleaner technologies that minimize environmental pollution caused by conventional industrial processes is an increasing global trend. Hence, traditionally used chemicals have been replaced by novel enzymatic alternatives in a wide variety of industrial-scale processes. Enzymatic oil degumming, the first step of the oil refining process, exploits the conversion catalyzed by phospholipases to remove vegetable crude oils' phospholipids. This enzymatic method reduces the gums' volume and increases the overall oil yield. A thermostable phospholipase would be highly advantageous for industrial oil degumming as oil treatment at higher temperatures would save energy and increase the recovery of oil by facilitating the mixing and gums removal. A thermostable phosphatidylcholine (PC) (and phosphatidylethanolamine (PE))-specific phospholipase C from Thermococcus kodakarensis (TkPLC) was studied and completely removed PC and PE from crude soybean oil at 80 °C. Due to these characteristics, TkPLC is an interesting promising candidate for industrial-scale enzymatic oil degumming at high temperatures. KEY POINTS: • A thermostable phospholipase C from T. kodakarensis (TkPLC) has been identified. • TkPLC was recombinantly produced in Pichia pastoris and successfully purified. • TkPLC completely hydrolyzed PC and PE in soybean oil degumming assays at 80 °C.
Identifiants
pubmed: 35854045
doi: 10.1007/s00253-022-12081-z
pii: 10.1007/s00253-022-12081-z
doi:
Substances chimiques
Lecithins
0
Phospholipids
0
Soybean Oil
8001-22-7
Phospholipases
EC 3.1.-
Type C Phospholipases
EC 3.1.4.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5081-5091Subventions
Organisme : Fondo para la Investigación Científica y Tecnológica
ID : PICT2015-0303
Organisme : Fondo para la Investigación Científica y Tecnológica
ID : PICT 2018-2569
Organisme : Fondo para la Investigación Científica y Tecnológica
ID : PICT2016-4124
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Aalrust E, Beyer W, Ottofrickenstein H, Penk G, Plainer H, Reiner R (1993) Enzymatic treatment of edible oils. Patent US5264367A. https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PALL&s1=5264367.PN
Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Methods 79(3):321–328. https://doi.org/10.1016/j.mimet.2009.09.026
doi: 10.1016/j.mimet.2009.09.026
pubmed: 19850088
Ahmad N, Rashid N, Haider MS, Akram M, Akhtar M (2014) Novel maltotriose-hydrolyzing thermoacidophilic type III pullulan hydrolase from Thermococcus kodakarensis. Appl Environ Microbiol 80(3):1108–1115. https://doi.org/10.1128/AEM.03139-13
doi: 10.1128/AEM.03139-13
pubmed: 24296501
pmcid: 3911212
Atalah J, Cáceres-Moreno P, Espina G, Blamey JM (2019) Thermophiles and the applications of their enzymes as new biocatalysts. Bioresour Technol 280:478–488. https://doi.org/10.1016/j.biortech.2019.02.008
doi: 10.1016/j.biortech.2019.02.008
pubmed: 30826176
Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp nov, a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp KOD1. Archaea 1(4):263–7
doi: 10.1155/2004/204953
Bergquist LP, Morgan WH, Saul D (2014) Selected enzymes from extreme thermophiles with applications in biotechnology. Cur Biotechnol 3(1):45–59. https://doi.org/10.2174/2211550102999131230150918
doi: 10.2174/2211550102999131230150918
Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759. https://doi.org/10.1016/j.biortech.2012.10.145
doi: 10.1016/j.biortech.2012.10.145
pubmed: 23246299
Bork P, Beckmann G (1993) The CUB domain: a widespread module in developmentally regulated proteins. J Mol Biol 231(2):539–545. https://doi.org/10.1006/jmbi.1993.1305
doi: 10.1006/jmbi.1993.1305
pubmed: 8510165
Borrelli GM, Trono D (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci 16(9):20774–20840. https://doi.org/10.3390/ijms160920774
doi: 10.3390/ijms160920774
pubmed: 26340621
pmcid: 4613230
Casado V, Martin D, Torres C, Reglero G (2012) Phospholipases in food industry: a review. Methods Mol Biol 861:495–523. https://doi.org/10.1007/978-1-61779-600-5_29
doi: 10.1007/978-1-61779-600-5_29
pubmed: 22426737
Cerminati S, Eberhardt F, Elena CE, Peiru S, Castelli ME, Menzella HG (2017) Development of a highly efficient oil degumming process using a novel phosphatidylinositol-specific phospholipase C enzyme. Appl Microbiol Biotechnol 101(11):4471–4479. https://doi.org/10.1007/s00253-017-8201-0
doi: 10.1007/s00253-017-8201-0
pubmed: 28238084
Cerminati S, Paoletti L, Aguirre A, Peirú S, Menzella HG, Castelli ME (2019) Industrial uses of phospholipases: current state and future applications. Appl Microbiol Biotechnol 103(6):2571–2582. https://doi.org/10.1007/s00253-019-09658-6
doi: 10.1007/s00253-019-09658-6
pubmed: 30729255
Clausen K (2001) Enzymatic oil-degumming by a novel microbial phospholipase. Eur J Lipid Sci Technol 103:333–340. https://doi.org/10.1002/1438-9312(200106)103:6%3c333::AID-EJLT333%3e3.0.CO;2-F
doi: 10.1002/1438-9312(200106)103:6<333::AID-EJLT333>3.0.CO;2-F
De Maria L, Vind J, Oxenbøll KM, Svendsen A, Patkar S (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74(2):290–300. https://doi.org/10.1007/s00253-006-0775-x
doi: 10.1007/s00253-006-0775-x
pubmed: 17221199
Dijkstra AJ (2011) Enzymatic Degumming. Lipid Technol 23(2):36–38. https://doi.org/10.1002/lite.201100085
doi: 10.1002/lite.201100085
Dijkstra AJ (2018) Enzymatic gum treatment. In: Bornscheuer UT (ed) Lipid Modification by Enzymes and Engineered Microbes. Elsevier, pp 157–175
Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43(W1):W389–W394. https://doi.org/10.1093/nar/gkv332
doi: 10.1093/nar/gkv332
pubmed: 25883141
pmcid: 4489285
Dumont M-J, Narine SS (2007) Soapstock and deodorizer distillates from North American vegetable oils: review on their characterization, extraction and utilization. Food Res Int 40(8):957–974. https://doi.org/10.1016/j.foodres.2007.06.006
doi: 10.1016/j.foodres.2007.06.006
Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195. https://doi.org/10.1371/journal.pcbi.1002195
doi: 10.1371/journal.pcbi.1002195
pubmed: 22039361
pmcid: 3197634
Elena C, Cerminati S, Ravasi P, Rasia R, Peiru S, Menzella HG, Castelli ME (2017) B. cereus phospholipase C engineering for efficient degumming of vegetable oil. Process Biochem 54:67–72. https://doi.org/10.1016/j.procbio.2017.01.011
doi: 10.1016/j.procbio.2017.01.011
Elena C, Ravasi P, Cerminati S, Peiru S, Castelli ME, Menzella HG (2016) Pichia pastoris engineering for the production of a modified phospholipase C. Process Biochem 51(12):1935–1944. https://doi.org/10.1016/j.procbio.2016.08.022
doi: 10.1016/j.procbio.2016.08.022
Frazzetto G (2003) White biotechnology. EMBO Rep 4(9):835–837. https://doi.org/10.1038/sj.embor.embor928
doi: 10.1038/sj.embor.embor928
pubmed: 12949582
pmcid: 1326365
Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15(3):352–363. https://doi.org/10.1101/gr.3003105
doi: 10.1101/gr.3003105
pubmed: 15710748
pmcid: 551561
Guo J, Coker AR, Wood SP, Cooper JB, Keegan RM, Ahmad N, Muhammad MA, Rashid N, Akhtar M (2018) Structure and function of the type III pullulan hydrolase from Thermococcus kodakarensis. Acta Crystallogr D Struct Biol 74(Pt 4):305–314. https://doi.org/10.1107/S2059798318001754
doi: 10.1107/S2059798318001754
pubmed: 29652257
Guo Z, Vikbjerg AF, Xu X (2005) Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv 23(3):203–259. https://doi.org/10.1016/j.biotechadv.2005.02.001
doi: 10.1016/j.biotechadv.2005.02.001
pubmed: 15763405
Hammond EG, Johnson LA, Su C, Wang T, White PJ (2005) Soybean oil. In: Shahidi F. (ed.). Bailey's Industrial Oil and Fat Products, 6th edn. Hoboken, New Jersey, USA, Vol. 2, pp 577–641
Han T, Zeng F, Li Z, Liu L, Wei M, Guan Q, Liang X, Peng Z, Liu M, Qin J, Zhang S, Jia B (2013) Biochemical characterization of a recombinant pullulanase from Thermococcus kodakarensis KOD1. Lett Appl Microbiol 57(4):336–343. https://doi.org/10.1111/lam.12118
doi: 10.1111/lam.12118
pubmed: 23789737
Hough E, Hansen LK, Birknes B, Jynge K, Hansen S, Hordvik A, Little C, Dodson E, Derewenda Z (1989) High-resolution (1.5 Å) crystal structure of phospholipase C from Bacillus cereus. Nat 338(6213):357–360. https://doi.org/10.1038/338357a0
doi: 10.1038/338357a0
Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production – a literature review. J Clean Prod 42:228–240. https://doi.org/10.1016/j.jclepro.2012.11.005
doi: 10.1016/j.jclepro.2012.11.005
Käll L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35(Web Server issue):429–32. https://doi.org/10.1093/nar/gkm256
doi: 10.1093/nar/gkm256
Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Cur Opin. Biotechnol 13(4):345–351. https://doi.org/10.1016/s0958-1669(02)00328-2
doi: 10.1016/s0958-1669(02)00328-2
Loeffler F, Plainer H, Sproessler B, Ottofrickenstein H (1999) Vegetable oil enzymatic degumming process by means of Aspergillus phospholipase. Patent US6001640A. https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&d=PALL&s1=6001640.PN
Lyu Y, Ye L, Xu J, Yang X, Chen W, Yu H (2016) Recent research progress with phospholipase C from Bacillus cereus. Biotechnol Lett 38(1):23–31. https://doi.org/10.1007/s10529-015-1962-6
doi: 10.1007/s10529-015-1962-6
pubmed: 26437973
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold - making protein folding accessible to all. bioRxiv:2021.08.15.456425 https://doi.org/10.1101/2021.08.15.456425
Murakami T, Kanai T, Takata H, Kuriki T, Imanaka T (2006) A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 188(16):5915–5924. https://doi.org/10.1128/JB.00390-06
doi: 10.1128/JB.00390-06
pubmed: 16885460
pmcid: 1540076
Nakatani M, Ezaki S, Atomi H, Imanaka T (2000) A DNA ligase from a hyperthermophilic archaeon with unique cofactor specificity. J Bacteriol 182(22):6424–6433. https://doi.org/10.1128/JB.182.22.6424-6433.2000
doi: 10.1128/JB.182.22.6424-6433.2000
pubmed: 11053387
pmcid: 94789
Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51(6):711–729. https://doi.org/10.1007/s002530051456
doi: 10.1007/s002530051456
pubmed: 10422220
Ramrakhiani L, Chand S (2011) Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol 164(7):991–1022. https://doi.org/10.1007/s12010-011-9190-6
doi: 10.1007/s12010-011-9190-6
pubmed: 21302142
Ravasi P, Braia M, Eberhardt F, Elena C, Cerminati S, Peiru S, Castelli ME, Menzella HG (2015) High-level production of Bacillus cereus phospholipase C in Corynebacterium glutamicum. J Biotechnol 216:142–148. https://doi.org/10.1016/j.jbiotec.2015.10.018
doi: 10.1016/j.jbiotec.2015.10.018
pubmed: 26519562
Romero A, Romão MJ, Varela PF, Kölln I, Dias JM, Carvalho AL, Sanz L, Töpfer-Petersen E, Calvete JJ (1997) The crystal structures of two spermadhesins reveal the CUB domain fold. Nat Struct Biol 4(10):783–788. https://doi.org/10.1038/nsb1097-783
doi: 10.1038/nsb1097-783
pubmed: 9334740
Sampaio KA, Zyaykina N, Uitterhaegen E, De Greyt W, Verhé R, de Almeida Meirelles AJ, Stevens CV (2019) Enzymatic degumming of corn oil using phospholipase C from a selected strain of Pichia pastoris. LWT 107:145–150. https://doi.org/10.1016/j.lwt.2019.03.003
doi: 10.1016/j.lwt.2019.03.003
Sein A, Hitchman T, Dayton CL (2019) Enzymes in vegetable oil degumming processes. In: Vogel A and May O (eds) Industrial enzyme applications, 1st edn. Weinheim, Germany, pp 323–350
Siddiqui KS (2017) Defying the activity–stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol 37(3):309–322
doi: 10.3109/07388551.2016.1144045
Soe JB, Turner M (2012) Enzymatic oil-degumming method. Patent US8192782B2. https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,192,782.PN.&OS=PN/8,192,782&RS=PN/8,192,782
Sumner JB (1944) A method for colorimetric determination of phosphorus. Sci 100(2601):413–414. https://doi.org/10.1126/science.100.2601.413
doi: 10.1126/science.100.2601.413
Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
doi: 10.1128/MMBR.65.1.1-43.2001
pubmed: 11238984
pmcid: 99017
Yang B, Zhou R, Yang J-G, Wang Y-H, Wang W-F (2008) Insight into the enzymatic degumming process of soybean oil. J Am Oil Chem Soc 85(5):421–425. https://doi.org/10.1007/s11746-008-1225-y
doi: 10.1007/s11746-008-1225-y
Zhang Y, An J, Yang G, Zhang X, Xie Y, Chen L, Feng Y (2016) Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference. Acta Biochim Biophys Sin 48(10):948–957. https://doi.org/10.1093/abbs/gmw086
doi: 10.1093/abbs/gmw086
pubmed: 27563004