Biogeographic responses and niche occupancy of microbial communities following long-term land-use change.

Biodiversity hotspots Historical contingency Land-use change Microbial niche specialization Soil bacterial co-occurrence Spatial distance

Journal

Antonie van Leeuwenhoek
ISSN: 1572-9699
Titre abrégé: Antonie Van Leeuwenhoek
Pays: Netherlands
ID NLM: 0372625

Informations de publication

Date de publication:
Sep 2022
Historique:
received: 17 01 2022
accepted: 29 06 2022
pubmed: 20 7 2022
medline: 12 8 2022
entrez: 19 7 2022
Statut: ppublish

Résumé

Understanding the effects of forest-to-agriculture conversion on microbial diversity has been a major goal in soil ecological studies. However, linking community assembly to the ruling ecological processes at local and regional scales remains challenging. Here, we evaluated bacterial community assembly patterns and the ecological processes governing niche specialization in a gradient of geography, seasonality, and land-use change, totaling 324 soil samples, 43 habitat characteristics (abiotic factors), and 16 metabolic and co-occurrence patterns (biotic factors), in the Brazilian Atlantic Rainforest, a subtropical biome recognized as one the world's largest and most threatened hotspots of biodiversity. Pairwise beta diversities were lower in pastures than in forest and no-till soils. Pasture communities showed a predominantly neutral model, regarding stochastic processes, with moderate dispersion, leading to biotic homogenization. Most no-till and forest microbial communities followed a niche-based model, with low rates of dispersal and weak homogenizing selection, indicating niche specialization or variable selection. Historical and evolutionary contingencies, as represented by soil type, season, and dispersal limitation were the main drivers of microbial assembly and processes at the local scale, markedly correlated with the occurrence of endemic microbes. Our results indicate that the patterns of assembly and their governing processes are dependent on the niche occupancy of the taxa evaluated (generalists or specialists). They are also more correlated with historical and evolutionary contingencies and the interactions among taxa (i.e., co-occurrence patterns) than the land-use change itself.

Identifiants

pubmed: 35852752
doi: 10.1007/s10482-022-01761-5
pii: 10.1007/s10482-022-01761-5
doi:

Substances chimiques

Soil 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1129-1150

Subventions

Organisme : PRONEX-CNPq/FAPESP
ID : No. 140317/ 2014-7
Organisme : SisBiota-CNPq
ID : 563251/2010-7
Organisme : FAPESP/CNPq
ID : 2008/58114-3
Organisme : FAPESP/NSF
ID : 2014/50320-4

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Albright MBN, Chase AB, Martiny JBH (2019) Experimental evidence that stochasticity contributes to bacterial composition and functioning in a decomposer community. Mbio 10:1–13. https://doi.org/10.1128/mbio.00568-19
doi: 10.1128/mbio.00568-19
Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry, 1st edn. Elsevier, London
Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1046/j.1442-9993.2001.01070.x
doi: 10.1046/j.1442-9993.2001.01070.x
Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395. https://doi.org/10.1016/0038-0717(93)90140-7
doi: 10.1016/0038-0717(93)90140-7
Anjos L, Gaistardo, Carlos Cruz; Deckers J, Dondeyne, Stefaan; Eberhardt, Einar; Gerasimova M, et al (2015) World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps. FAO, Rome
Astorga A, Oksanen J, Luoto M et al (2012) Distance decay of similarity in freshwater communities: Do macro- and microorganisms follow the same rules? Glob Ecol Biogeogr 21:365–375. https://doi.org/10.1111/j.1466-8238.2011.00681.x
doi: 10.1111/j.1466-8238.2011.00681.x
Banerjee S, Walder F, Büchi L et al (2019) Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J 13:1722–1736. https://doi.org/10.1038/s41396-019-0383-2
doi: 10.1038/s41396-019-0383-2 pubmed: 30850707 pmcid: 6591126
Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351. https://doi.org/10.1038/ismej.2011.119
doi: 10.1038/ismej.2011.119 pubmed: 21900968
Bartz MLC, Brown GG, da Rosa MG et al (2014) Earthworm richness in land-use systems in Santa Catarina, Brazil. Appl Soil Ecol 83:59–70. https://doi.org/10.1016/j.apsoil.2014.03.003
doi: 10.1016/j.apsoil.2014.03.003
Baselga A (2017) Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods Ecol Evol 8:799–808. https://doi.org/10.1111/2041-210X.12693
doi: 10.1111/2041-210X.12693
Baselga A, Orme D, Villeger S, et al (2018) betapart: Partitioning Beta Diversity into Turnover and Nestedness Components.
Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: International AAAI Conference on Weblogs and Social Media. San Jose
Bittleston LS, Gralka M, Leventhal GE et al (2020) Context-dependent dynamics lead to the assembly of functionally distinct microbial communities. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-15169-0
doi: 10.1038/s41467-020-15169-0
Blanchet FG, Cazelles K, Gravel D (2020) Co-occurrence is not evidence of ecological interactions. Ecol Lett 23:1050–1063
doi: 10.1111/ele.13525
Bohn K, Pavlick R, Reu B, Kleidon A (2014) The strengths of r- And K-selection shape diversity-disturbance relationships. PLoS ONE 9:e95659. https://doi.org/10.1371/journal.pone.0095659
doi: 10.1371/journal.pone.0095659 pubmed: 24763335 pmcid: 3998956
Bozdogan H (1987) Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345–370. https://doi.org/10.1007/BF02294361
doi: 10.1007/BF02294361
Brinkmann N, Schneider D, Sahner J et al (2019) Intensive tropical land use massively shifts soil fungal communities. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-39829-4
doi: 10.1038/s41598-019-39829-4
Brody JR, Kern SE (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. Biotechniques 36:214–216
doi: 10.2144/04362BM02
Brookes PC, Lauber CL, Rousk J et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME. https://doi.org/10.1038/ismej.2010.58
doi: 10.1038/ismej.2010.58
Cambardella CA, Elliott ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783. https://doi.org/10.2136/sssaj1992.03615995005600030017x
doi: 10.2136/sssaj1992.03615995005600030017x
Ceola G, Goss-Souza D, Alves J et al (2021) Biogeographic patterns of arbuscular mycorrhizal fungal communities along a land-use intensification gradient in the subtropical atlantic forest biome. Microb Ecol. https://doi.org/10.1007/s00248-021-01721-y
doi: 10.1007/s00248-021-01721-y pubmed: 33656687
Chazdon RL, Chao A, Colwell RK et al (2011) A novel statistical method for classifying habitat generalists and specialists. Ecology 92:1332–1343. https://doi.org/10.1890/10-1345.1
doi: 10.1890/10-1345.1 pubmed: 21797161
Claessen MEC, Barreto WO, Paula JL, Duarte MN (1997) Manual of soil analysis methods, 2nd edn. Embrapa, Rio de Janeiro
Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM (2019) Ecology and evolution of plant microbiomes. Annu Rev Microbiol. https://doi.org/10.1146/annurev-micro-090817-062524
doi: 10.1146/annurev-micro-090817-062524 pubmed: 31091418
Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182. https://doi.org/10.1111/j.1461-0248.2005.00820.x
doi: 10.1111/j.1461-0248.2005.00820.x pubmed: 21352441
Creamer RE, Hannula SE, Leeuwen JPV et al (2016) Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl Soil Ecol 97:112–124. https://doi.org/10.1016/j.apsoil.2015.08.006
doi: 10.1016/j.apsoil.2015.08.006
De Vrieze J, Ijaz UZ, Saunders AM, Theuerl S (2018) Terminal restriction fragment length polymorphism is an “old school” reliable technique for swift microbial community screening in anaerobic digestion. Sci Rep 8:20–22. https://doi.org/10.1038/s41598-018-34921-7
doi: 10.1038/s41598-018-34921-7
De Wit R, Bouvier T (2006) “Everything is everywhere, but, the environment selects”; what did Baas Becking and Beijerinck really say? Environ Microbiol 8:755–758. https://doi.org/10.1111/j.1462-2920.2006.01017.x
doi: 10.1111/j.1462-2920.2006.01017.x pubmed: 16584487
Delgado-Baquerizo M, Oliverio AM, Brewer TE et al (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325. https://doi.org/10.1126/science.aap9516
doi: 10.1126/science.aap9516 pubmed: 29348236
Dexter AR (1988) Advances in characterization of soil structure. Soil Tillage Res 11:199–238
doi: 10.1016/0167-1987(88)90002-5
Dexter AR, Czyz EA, Gaţe OP (2007) A method for prediction of soil penetration resistance. Soil Tillage Res 93:412–419. https://doi.org/10.1016/j.still.2006.05.011
doi: 10.1016/j.still.2006.05.011
Dhaliwal GS, Gupta N, Kukal SS, Kaur M (2011) Standardization of automated Vario EL III CHNS analyzer for total carbon and nitrogen determination in soils. Commun Soil Sci Plant Anal 42:971–979. https://doi.org/10.1080/00103624.2011.558965
doi: 10.1080/00103624.2011.558965
Dini-Andreote F, de Cássia Pereira e Silva M, Triadó-Margarit X, et al (2014) Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J 8:1989–2001. https://doi.org/10.1038/ismej.2014.54
doi: 10.1038/ismej.2014.54 pubmed: 24739625 pmcid: 4184019
Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1414261112
doi: 10.1073/pnas.1414261112 pubmed: 25733885 pmcid: 4371938
Dumbrell AJ, Nelson M, Helgason T et al (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345. https://doi.org/10.1038/ismej.2009.122
doi: 10.1038/ismej.2009.122 pubmed: 19924158
Durrer A, Gumiere T, Taketani RG et al (2017) The drivers underlying biogeographical patterns of bacterial communities in soils under sugarcane cultivation. Appl Soil Ecol 110:12–20. https://doi.org/10.1016/j.apsoil.2016.11.005
doi: 10.1016/j.apsoil.2016.11.005
Edwards U, Rogall T, Blöcker H et al (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. https://doi.org/10.1093/nar/17.19.7843
doi: 10.1093/nar/17.19.7843 pubmed: 2798131 pmcid: 334891
Egli M, Hunt AG, Dahms D et al (2018) Prediction of soil formation as a function of age using the percolation theory approach. Front Environ Sci 6:1–21. https://doi.org/10.3389/fenvs.2018.00108
doi: 10.3389/fenvs.2018.00108
Etienne RS, Alonso D (2005) A dispersal-limited sampling theory for species and alleles. Ecol Lett 8:1147–1156. https://doi.org/10.1111/j.1461-0248.2005.00817.x
doi: 10.1111/j.1461-0248.2005.00817.x pubmed: 21352438
Evans S, Martiny JBH, Allison SD (2017) Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J 11:176–185. https://doi.org/10.1038/ismej.2016.96
doi: 10.1038/ismej.2016.96 pubmed: 27494293
Fan K, Cardona C, Li Y et al (2017) Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol Biochem 113:275–284. https://doi.org/10.1016/j.soilbio.2017.06.020
doi: 10.1016/j.soilbio.2017.06.020
Faoro H, Alves AC, Souza EM et al (2010) Influence of soil characteristics on the diversity of bacteria in the southern brazilian atlantic forest. Appl Environ Microbiol 76:4744–4749. https://doi.org/10.1128/AEM.03025-09
doi: 10.1128/AEM.03025-09 pubmed: 20495051 pmcid: 2901723
Farrer EC, Porazinska DL, Spasojevic MJ et al (2019) Soil microbial networks shift across a high-elevation successional gradient. Front Microbiol 10:1–13. https://doi.org/10.3389/fmicb.2019.02887
doi: 10.3389/fmicb.2019.02887
Felipe-Lucia MR, Soliveres S, Penone C et al (2020) Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc Natl Acad Sci 117:28140–28149. https://doi.org/10.1073/pnas.2016210117
doi: 10.1073/pnas.2016210117 pubmed: 33093203 pmcid: 7668166
Feng M, Tripathi BM, Shi Y et al (2019) Interpreting distance-decay pattern of soil bacteria via quantifying the assembly processes at multiple spatial scales. Microbiologyopen. https://doi.org/10.1002/mbo3.851
doi: 10.1002/mbo3.851 pubmed: 31568677 pmcid: 6925156
Ferrenberg S, O’Neill SP, Knelman JE et al (2013) Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7:1102–1111. https://doi.org/10.1038/ismej.2013.11
doi: 10.1038/ismej.2013.11 pubmed: 23407312 pmcid: 3660671
Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. https://doi.org/10.1073/pnas.0507535103
doi: 10.1073/pnas.0507535103 pubmed: 16407148 pmcid: 1334650
Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8:1–11. https://doi.org/10.1371/journal.pcbi.1002687
doi: 10.1371/journal.pcbi.1002687
Fukami T, Nakajima M (2011) Community assembly: alternative stable states or alternative transient states? Ecol Lett 14:973–984. https://doi.org/10.1111/j.1461-0248.2011.01663.x
doi: 10.1111/j.1461-0248.2011.01663.x pubmed: 21790934 pmcid: 3187870
Gao Q, Yang Y, Feng J et al (2019) The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil. Glob Ecol Biogeogr 28:1093–1105. https://doi.org/10.1111/geb.12917
doi: 10.1111/geb.12917
Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. ASA, Madison, pp 383–411
Goss-Souza D, Mendes LW, Borges CD et al (2017) Soil microbial community dynamics and assembly under long-term land use change. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fix109
doi: 10.1093/femsec/fix109 pubmed: 28961809
Goss-Souza D, Mendes LW, Rodrigues JLM, Tsai SM (2019) Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiz009
doi: 10.1093/femsec/fiz009 pubmed: 30715365
Goss-Souza D, Mendes LW, Rodrigues JLM, Tsai SM (2020) Ecological processes shaping bulk soil and rhizosphere microbiome assembly in a long-term amazon forest-to-agriculture conversion. Microb Ecol 79:110–122. https://doi.org/10.1007/s00248-019-01401-y
doi: 10.1007/s00248-019-01401-y pubmed: 31250077
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. https://doi.org/10.1038/nrmicro2795
doi: 10.1038/nrmicro2795 pubmed: 22580365
Hazard C, Gosling P, Van Der Gast CJ et al (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J 7:498–508. https://doi.org/10.1038/ismej.2012.127
doi: 10.1038/ismej.2012.127 pubmed: 23096401
Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa-area relationship for bacteria. Nature 432:750–753. https://doi.org/10.1038/nature03073
doi: 10.1038/nature03073 pubmed: 15592412
Hovatter SR, Dejelo C, Case AL, Blackwood CB (2011) Metacommunity organization of soil microorganisms depends on habitat defined by presence of Lobelia siphilitica plants. Ecology 92:57–65
doi: 10.1890/10-0332.1
Hubbell SP (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19:166–172. https://doi.org/10.1111/j.0269-8463.2005.00965.x
doi: 10.1111/j.0269-8463.2005.00965.x
Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review. CATENA 32:155–172. https://doi.org/10.1016/S0341-8162(98)00053-8
doi: 10.1016/S0341-8162(98)00053-8
Jabot F, Etienne RS, Chave J (2008) Reconciling neutral community models and environmental filtering: theory and an empirical test. Oikos. https://doi.org/10.1111/j.0030-1299.2008.16724.x
doi: 10.1111/j.0030-1299.2008.16724.x
Jantz SM, Barker B, Brooks TM et al (2015) Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conserv Biol 29:1122–1131. https://doi.org/10.1111/cobi.12549
doi: 10.1111/cobi.12549 pubmed: 26129841
Jesus EC, Marsh TL, Tiedje JM, Moreira FM (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J 3:1004–1011. https://doi.org/10.1038/ismej.2009.47
doi: 10.1038/ismej.2009.47
Jia X, Dini-Andreote F, Falcão Salles J (2018) Community assembly processes of the microbial rare biosphere. Trends Microbiol. https://doi.org/10.1016/j.tim.2018.02.011
doi: 10.1016/j.tim.2018.02.011 pubmed: 29550356
Jones CM, Hallin S (2019) Geospatial variation in co-occurrence networks of nitrifying microbial guilds. Mol Ecol 28:293–306. https://doi.org/10.1111/mec.14893
doi: 10.1111/mec.14893 pubmed: 30307658
Kaiser K, Wemheuer B, Korolkow V et al (2016) Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep 6:1–12. https://doi.org/10.1038/srep33696
doi: 10.1038/srep33696
Karczewski K, Riss HW, Meyer EI (2017) Comparison of DNA-fingerprinting (T-RFLP) and high-throughput sequencing (HTS) to assess the diversity and composition of microbial communities in groundwater ecosystems. Limnologica 67:45–53. https://doi.org/10.1016/j.limno.2017.10.001
doi: 10.1016/j.limno.2017.10.001
Kari A, Nagymáté Z, Romsics C et al (2019) Monitoring of soil microbial inoculants and their impact on maize (Zea mays L.) rhizosphere using T-RFLP molecular fingerprint method. Appl Soil Ecol 138:233–244. https://doi.org/10.1016/j.apsoil.2019.03.010
doi: 10.1016/j.apsoil.2019.03.010
Karimi B, Villerd J, Dequiedt S et al (2020) Biogeography of soil microbial habitats across France. Glob Ecol Biogeogr 29:1399–1411. https://doi.org/10.1111/geb.13118
doi: 10.1111/geb.13118
Keeney DR, Nelson DW (1982) Nitrogen - inorganic forms. In: Page AL (ed) Methods in Soil Analysis, part 2, 2nd edn. ASA and SSSA, Madison, pp 643–698
Keil P (2019) Z-scores unite pairwise indices of ecological similarity and association for binary data. Ecosphere 10:1–7. https://doi.org/10.1002/ecs2.2933
doi: 10.1002/ecs2.2933
König S, Köhnke MC, Firle A-L et al (2019) Disturbance size can be compensated for by spatial fragmentation in soil microbial ecosystems. Front Ecol Evol 7:1–11. https://doi.org/10.3389/fevo.2019.00290
doi: 10.3389/fevo.2019.00290
Lange M, Eisenhauer N, Sierra CA et al (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. https://doi.org/10.1038/ncomms7707
doi: 10.1038/ncomms7707 pubmed: 26674845
Lauber CL, Ramirez KS, Aanderud Z et al (2013) Temporal variability in soil microbial communities across land-use types. ISME J 7:1641–1650. https://doi.org/10.1038/ismej.2013.50
doi: 10.1038/ismej.2013.50 pubmed: 23552625 pmcid: 3721119
Leff JW, Jones SE, Prober SM et al (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A 112:10967–10972. https://doi.org/10.1073/pnas.1508382112
doi: 10.1073/pnas.1508382112 pubmed: 26283343 pmcid: 4568213
Legendre P, Fortin M-J (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138
doi: 10.1007/BF00048036
Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x
doi: 10.1111/j.1461-0248.2004.00608.x
Lepš J, Šmilauer P (2005) Multivariate analysis of ecological data using CANOCO. Bull Ecol Soc Am 86:6–6. https://doi.org/10.1890/0012-9623(2005)86[6a:MAOEDU]2.0.CO;2
doi: 10.1890/0012-9623(2005)86[6a:MAOEDU]2.0.CO;2
Li pengWangChen SPY et al (2020) Island biogeography of soil bacteria and fungi: similar patterns, but different mechanisms. ISME J 14:1886–1896. https://doi.org/10.1038/s41396-020-0657-8
doi: 10.1038/s41396-020-0657-8
Li X, Jousset A, de Boer W et al (2019) Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J 13:738–751. https://doi.org/10.1038/s41396-018-0300-0
doi: 10.1038/s41396-018-0300-0 pubmed: 30368524
Li Y, Wu X, Chen T et al (2018) Plant phenotypic traits eventually shape its microbiota: a common garden test. Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.02479
doi: 10.3389/fmicb.2018.02479
Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol 188:117–131. https://doi.org/10.1007/s11258-006-9126-3
doi: 10.1007/s11258-006-9126-3
Luo Z, Liu J, Zhao P et al (2019) Biogeographic patterns and assembly mechanisms of bacterial communities differ between habitat generalists and specialists across elevational gradients. Front Microbiol 10:1–14. https://doi.org/10.3389/fmicb.2019.00169
doi: 10.3389/fmicb.2019.00169
Ma B, Dai Z, Wang H, et al (2017) Distinct biogeographic patterns for Archaea, Bacteria, and Fungi along the Vegetation Gradient at the Continental Scale in Eastern China. mSystems 2: 1–14
Ma B, Wang H, Dsouza M et al (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10:1891–1901. https://doi.org/10.1038/ismej.2015.261
doi: 10.1038/ismej.2015.261 pubmed: 26771927 pmcid: 5029158
Maaß S, Migliorini M, Rillig MC, Caruso T (2014) Disturbance, neutral theory, and patterns of beta diversity in soil communities. Ecol Evol 4:4766–4774. https://doi.org/10.1002/ece3.1313
doi: 10.1002/ece3.1313 pubmed: 25558367 pmcid: 4278825
Martiny JBH, Bohannan BJM, Brown JH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. https://doi.org/10.1038/nrmicro1341
doi: 10.1038/nrmicro1341 pubmed: 16415926
Martiny JBH, Eisen JA, Penn K et al (2011) Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:7850–7854. https://doi.org/10.1073/pnas.1016308108
doi: 10.1073/pnas.1016308108 pubmed: 21518859 pmcid: 3093525
Mendes LW, de Brossi MJ, L, Kuramae EE, Tsai SM, (2015a) Land-use system shapes soil bacterial communities in Southeastern Amazon region. Appl Soil Ecol 95:151–160. https://doi.org/10.1016/j.apsoil.2015.06.005
doi: 10.1016/j.apsoil.2015.06.005
Mendes LW, Kuramae EE, Navarrete AA et al (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1–11. https://doi.org/10.1038/ismej.2014.17
doi: 10.1038/ismej.2014.17
Mendes LW, Raaijmakers JM, De Hollander M et al (2018) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J 12:212–224. https://doi.org/10.1038/ismej.2017.158
doi: 10.1038/ismej.2017.158 pubmed: 29028000
Mendes LW, Tsai SM, Navarrete AA et al (2015b) Soil-borne microbiome: linking diversity to function. Microb Ecol 70:255–265. https://doi.org/10.1007/s00248-014-0559-2
doi: 10.1007/s00248-014-0559-2 pubmed: 25586384
Meyer KM, Klein AM, Rodrigues JLM et al (2017) Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms. Mol Ecol 26:1547–1556. https://doi.org/10.1111/mec.14011
doi: 10.1111/mec.14011 pubmed: 28100018
Meyer KM, Memiaghe H, Korte L et al (2018) Why do microbes exhibit weak biogeographic patterns? ISME J 12:1404–1413. https://doi.org/10.1038/s41396-018-0103-3
doi: 10.1038/s41396-018-0103-3 pubmed: 29662146 pmcid: 5956095
Mirza BS, McGlinn DJ, Bohannan BJM et al (2020) Diazotrophs show signs of restoration in Amazon rain forest soils with ecosystem rehabilitation. Appl Environ Microbiol 86:1–10. https://doi.org/10.1128/AEM.00195-20
doi: 10.1128/AEM.00195-20
Mueller RC, Paula FS, Mirza BS et al (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. ISME J 8:1548–1550. https://doi.org/10.1038/ismej.2013.253
doi: 10.1038/ismej.2013.253 pubmed: 24451208 pmcid: 4069395
Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–558. https://doi.org/10.1038/35002501
doi: 10.1038/35002501 pubmed: 10706275
Nemergut DR, Schmidt SK, Fukami T et al (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356. https://doi.org/10.1128/MMBR.00051-12
doi: 10.1128/MMBR.00051-12 pubmed: 24006468 pmcid: 3811611
Oksanen J, Blanchet FG, Friendly M et al (2019) vegan: community ecology package. R Package Version 2(5–6):104
Pärtel M, Öpik M, Moora M et al (2017) Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytol. https://doi.org/10.1111/nph.14695
doi: 10.1111/nph.14695 pubmed: 28722181
Paula FS, Rodrigues JLM, Zhou J et al (2014) Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol 23:2988–2999. https://doi.org/10.1111/mec.12786
doi: 10.1111/mec.12786 pubmed: 24806276
Pedrinho A, Mendes LW, Merloti LF et al (2019) Forest-to-pasture conversion and recovery based on assessment of microbial communities in Eastern Amazon rainforest. FEMS Microbiol Ecol 95:1–10. https://doi.org/10.1093/femsec/fiy236
doi: 10.1093/femsec/fiy236
Pellissier L, Niculita-Hirzel H, Dubuis A et al (2014) Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps. Mol Ecol 23:4274–4290
doi: 10.1111/mec.12854
Poudel R, Jumpponen A, Schlatter DC et al (2016) Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106:1083–1096. https://doi.org/10.1094/PHYTO-02-16-0058-FI
doi: 10.1094/PHYTO-02-16-0058-FI pubmed: 27482625
Powell JR, Karunaratne S, Campbell CD et al (2015) Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nat Commun 6:1–10. https://doi.org/10.1038/ncomms9444
doi: 10.1038/ncomms9444
Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220:1059–1075. https://doi.org/10.1111/nph.15119
doi: 10.1111/nph.15119 pubmed: 29603232
Ranjard L, Dequiedt S, Chemidlin Prévost-Bouré N et al (2013) Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat Commun 4:1–10. https://doi.org/10.1038/ncomms2431
doi: 10.1038/ncomms2431
Reznick D, Bryant MJ, Bashey F (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:1509–1520. https://doi.org/10.1890/0012-9658(2002)083[1509:raksrt]2.0.co;2
doi: 10.1890/0012-9658(2002)083[1509:raksrt]2.0.co;2
Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021
doi: 10.1016/j.biocon.2009.02.021
Robeson MS, King AJ, Freeman KR et al (2011) Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally. Proc Natl Acad Sci U S A 108:4406–4410. https://doi.org/10.1073/pnas.1012678108
doi: 10.1073/pnas.1012678108 pubmed: 21368117 pmcid: 3060258
Rocha FI, Ribeiro TG, Fontes MA et al (2021) Land-use system and forest floor explain prokaryotic metacommunity structuring and spatial turnover in amazonian forest-to-pasture conversion areas. Front Microbiol 12:1–13. https://doi.org/10.3389/fmicb.2021.657508
doi: 10.3389/fmicb.2021.657508
Rodrigues JLM, Pellizari VH, Mueller R et al (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci U S A 110:988–993. https://doi.org/10.1073/pnas.1220608110
doi: 10.1073/pnas.1220608110 pubmed: 23271810
Rodríguez-Valdecantos G, Manzano M, Sánchez R et al (2017) Early successional patterns of bacterial communities in soil microcosms reveal changes in bacterial community composition and network architecture, depending on the successional condition. Appl Soil Ecol 120:44–54. https://doi.org/10.1016/j.apsoil.2017.07.015
doi: 10.1016/j.apsoil.2017.07.015
Schütte UME, Abdo Z, Bent SJ et al (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380. https://doi.org/10.1007/s00253-008-1565-4
doi: 10.1007/s00253-008-1565-4 pubmed: 18648804
Sengupta A, Stegen JC, Neto AAM, Wang Y (2019) Assessing Microbial Community Patterns During Incipient Soil Formation From Basalt. pp. 1–18
Shade A, Dunn RR, Blowes SA, et al (2018) Macroecology to Unite All Life , Large and Small. pp. 1–14
Shi Y, Delgado-Baquerizo M, Li Y et al (2020) Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environ Int 142:105869. https://doi.org/10.1016/j.envint.2020.105869
doi: 10.1016/j.envint.2020.105869 pubmed: 32593837
Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography (cop) 30:3–12. https://doi.org/10.1111/j.0906-7590.2007.04817.x
doi: 10.1111/j.0906-7590.2007.04817.x
Sparling G, West A (1988) A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biol Biochem 20:337–343
doi: 10.1016/0038-0717(88)90014-4
Sparling GP (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207. https://doi.org/10.1071/SR9920195
doi: 10.1071/SR9920195
Steele JA, Countway PD, Xia L et al (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425. https://doi.org/10.1038/ismej.2011.24
doi: 10.1038/ismej.2011.24 pubmed: 21430787 pmcid: 3160682
Stegen JC, Lin X, Fredrickson JK et al (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. https://doi.org/10.1038/ismej.2013.93
doi: 10.1038/ismej.2013.93 pubmed: 23739053 pmcid: 3806266
Székely AJ, Langenheder S (2014) The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol Ecol 87:102–112. https://doi.org/10.1111/1574-6941.12195
doi: 10.1111/1574-6941.12195 pubmed: 23991811
Team RC (2019) R: A language and environment for statistical computing
Tedesco MJ, Gianello C, Bissani CA et al (1995) Analysis of soil, plants and other materials. Universidade Federal do Rio Grande do Sul, Porto Alegre
Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) Manual de Métodos de Análise de Solo, 3rd edn. EMBRAPA Solos, Brasília
Tripathi BM, Stegen JC, Kim M et al (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12:1072–1083. https://doi.org/10.1038/s41396-018-0082-4
doi: 10.1038/s41396-018-0082-4 pubmed: 29515169 pmcid: 5864241
Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338
doi: 10.1111/j.1550-7408.1999.tb04612.x
Ulrich W, Gotelli NJ (2010) Null model analysis of species associations using abundance data. Ecology 91:3384–3397. https://doi.org/10.1890/09-2157.1
doi: 10.1890/09-2157.1 pubmed: 21141199
Vale MM, Tourinho L, Lorini ML et al (2018) Endemic birds of the Atlantic Forest: traits, conservation status, and patterns of biodiversity. J F Ornithol 89:193–206. https://doi.org/10.1111/jofo.12256
doi: 10.1111/jofo.12256
van der Gast CJ, Gosling P, Tiwari B, Bending GD (2011) Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13:241–249. https://doi.org/10.1111/j.1462-2920.2010.02326.x
doi: 10.1111/j.1462-2920.2010.02326.x pubmed: 20840583
van der Heijden MGA, Hartmann M (2016) Networking in the Plant Microbiome. PLoS Biol 14:1–9. https://doi.org/10.1371/journal.pbio.1002378
doi: 10.1371/journal.pbio.1002378
van der Heyde M, Ohsowski B, Abbott LK, Hart M (2017) Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza 27:431–440. https://doi.org/10.1007/s00572-016-0759-3
doi: 10.1007/s00572-016-0759-3 pubmed: 28120111
van Dorst J, Bissett A, Palmer AS et al (2014) Community fingerprinting in a sequencing world. FEMS Microbiol Ecol 89:316–330. https://doi.org/10.1111/1574-6941.12308
doi: 10.1111/1574-6941.12308 pubmed: 24580036
Vega-Avila AD, Gumiere T, Andrade PAMM et al (2014) Bacterial communities in the rhizosphere of Vitis vinifera L cultivated under distinct agricultural practices in Argentina Antonie van Leeuwenhoek. Int J Gen Mol Microbiol. https://doi.org/10.1007/s10482-014-0353-7
doi: 10.1007/s10482-014-0353-7
Wang J, Shen J, Wu Y et al (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310–1321. https://doi.org/10.1038/ismej.2013.30
doi: 10.1038/ismej.2013.30 pubmed: 23446837 pmcid: 3695296
Wang L, Han M, Li X et al (2020) Niche and neutrality work differently in microbial communities in fluidic and non-fluidic ecosystems. Microb Ecol 79:527–538
doi: 10.1007/s00248-019-01439-y
Wang XB, Lü XT, Yao J et al (2017) Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. ISME J. https://doi.org/10.1038/ismej.2017.11
doi: 10.1038/ismej.2017.11 pubmed: 29053149 pmcid: 5776466
Weinzettel J, Vačkář D, Medková H (2018) Human footprint in biodiversity hotspots. Front Ecol Environ 16:447–452. https://doi.org/10.1002/fee.1825
doi: 10.1002/fee.1825
Xue R, Zhao K, Yu X et al (2021) Deciphering sample size effect on microbial biogeographic patterns and community assembly processes at centimeter scale. Soil Biol Biochem 156:108218. https://doi.org/10.1016/j.soilbio.2021.108218
doi: 10.1016/j.soilbio.2021.108218
Zhao J, Gao Q, Zhou J et al (2019) The scale dependence of fungal community distribution in paddy soil driven by stochastic and deterministic processes. Fungal Ecol 42:100856. https://doi.org/10.1016/j.funeco.2019.07.010
doi: 10.1016/j.funeco.2019.07.010

Auteurs

Dennis Goss-Souza (D)

Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil. dennis.goss@ifpr.edu.br.
Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA. dennis.goss@ifpr.edu.br.
College of Agronomy, Federal Institute of Paraná, Av. Bento Munhoz da Rocha Neto, s/n, PRT 280, Palmas, PR, 88555-000, Brazil. dennis.goss@ifpr.edu.br.

Siu Mui Tsai (SM)

Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil.

Jorge Luiz Mazza Rodrigues (JLM)

Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA.
Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Osmar Klauberg-Filho (O)

Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88523-000, Brazil.

José Paulo Sousa (JP)

Department of Life Sciences, University of Coimbra, P3000-456, Coimbra, Portugal.

Dilmar Baretta (D)

Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88523-000, Brazil.
Department of Soils and Sustainability, Santa Catarina State University, Chapecó, SC, 89815-630, Brazil.

Lucas William Mendes (LW)

Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Lakes Salinity Archaea Bacteria Microbiota

Classifications MeSH