Biomechanical Study of Cervical Disc Arthroplasty Devices Using Finite Element Modeling.
Journal
Journal of engineering and science in medical diagnostics and therapy
ISSN: 2572-7966
Titre abrégé: J Eng Sci Med Diagn Ther
Pays: United States
ID NLM: 101723801
Informations de publication
Date de publication:
01 May 2021
01 May 2021
Historique:
received:
09
09
2020
revised:
11
01
2021
entrez:
14
7
2022
pubmed:
1
5
2021
medline:
1
5
2021
Statut:
ppublish
Résumé
Many artificial discs for have been introduced to overcome the disadvantages of conventional anterior discectomy and fusion. The purpose of this study was to evaluate the performance of different U.S. Food and Drug Administration (FDA)-approved cervical disc arthroplasty (CDA) on the range of motion (ROM), intradiscal pressure, and facet force variables under physiological loading. A validated three-dimensional finite element model of the human intact cervical spine (C2-T1) was used. The intact spine was modified to simulate CDAs at C5-C6. Hybrid loading with a follower load of 75 N and moments under flexion, extension, and lateral bending of 2 N·m each were applied to intact and CDA spines. From this work, it was found that at the index level, all CDAs except the Bryan disc increased ROM, and at the adjacent levels, motion decreased in all modes. The largest increase occurred under the lateral bending mode. The Bryan disc had compensatory motion increases at the adjacent levels. Intradiscal pressure reduced at the adjacent levels with Mobi-C and Secure-C. Facet force increased at the index level in all CDAs, with the highest force with the Mobi-C. The force generally decreased at the adjacent levels, except for the Bryan disc and Prestige LP in lateral bending. This study demonstrates the influence of different CDA designs on the anterior and posterior loading patterns at the index and adjacent levels with head supported mass type loadings. The study validates key clinical observations: CDA procedure is contraindicated in cases of facet arthroplasty and may be protective against adjacent segment degeneration.
Identifiants
pubmed: 35832636
doi: 10.1115/1.4049907
pii: JESMDT-20-1044
pmc: PMC8597568
mid: NIHMS1804142
doi:
Types de publication
Journal Article
Langues
eng
Pagination
021004Subventions
Organisme : NCATS NIH HHS
ID : UL1 TR001436
Pays : United States
Informations de copyright
Copyright © 2021 by ASME.
Références
Clin Biomech (Bristol, Avon). 2008 Nov;23(9):1095-104
pubmed: 18635294
Med Biol Eng Comput. 2012 May;50(5):515-22
pubmed: 22484661
Am J Transl Res. 2019 May 15;11(5):3109-3115
pubmed: 31217880
Spine (Phila Pa 1976). 2000 Jun 15;25(12):1548-54
pubmed: 10851105
Spine (Phila Pa 1976). 2011 Apr 20;36(9):700-8
pubmed: 21245792
BMC Musculoskelet Disord. 2019 Jan 31;20(1):49
pubmed: 30704444
J Bone Joint Surg Am. 2016 Oct 5;98(19):1606-1613
pubmed: 27707846
J Neurosurg Spine. 2007 Jul;7(1):40-6
pubmed: 17633486
J Mech Behav Biomed Mater. 2020 Jun;106:103735
pubmed: 32321632
Clin Biomech (Bristol, Avon). 1999 Jan;14(1):41-53
pubmed: 10619089
J Biomech. 2006;39(2):375-80
pubmed: 16321642
Annu Rev Biomed Eng. 2018 Jun 4;20:119-143
pubmed: 29865872
J Biomech Eng. 2000 Dec;122(6):623-9
pubmed: 11192384
Clin Biomech (Bristol, Avon). 2017 May;44:52-58
pubmed: 28340364
Med Biol Eng Comput. 2006 Aug;44(8):633-41
pubmed: 16937205
Spine (Phila Pa 1976). 2011 Aug 1;36(17):E1126-33
pubmed: 21785298
J Biomech. 2018 Jul 25;76:167-172
pubmed: 29929892
Clin Biomech (Bristol, Avon). 2012 Mar;27(3):226-33
pubmed: 22019300
J Mech Behav Biomed Mater. 2015 Jan;41:251-60
pubmed: 25457171
J Biomech. 2009 Mar 11;42(4):480-90
pubmed: 19200548
Eur J Orthop Surg Traumatol. 2015 Jul;25 Suppl 1:S155-65
pubmed: 25845316
Spine J. 2014 Sep 1;14(9):2231-45
pubmed: 24704679
Med Eng Phys. 2008 Nov;30(9):1127-33
pubmed: 18359659
Traffic Inj Prev. 2018 Feb 28;19(sup1):S29-S36
pubmed: 29584503
Clin Biomech (Bristol, Avon). 2005 Jun;20(5):451-4
pubmed: 15836931