The Comparative Analysis of Two RT-qPCR Kits for Detecting SARS-CoV-2 Reveals a Higher Risk of False-Negative Diagnosis in Samples with High Quantification Cycles for Viral and Internal Genes.
Journal
The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale
ISSN: 1712-9532
Titre abrégé: Can J Infect Dis Med Microbiol
Pays: Egypt
ID NLM: 101226876
Informations de publication
Date de publication:
2022
2022
Historique:
received:
26
08
2021
accepted:
02
06
2022
entrez:
11
7
2022
pubmed:
12
7
2022
medline:
12
7
2022
Statut:
epublish
Résumé
The early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the real-time quantitative polymerase chain reaction (RT-qPCR) as a gold-standard molecular tool has allowed to test and trace the viral spread and the isolation of COVID-19-infected patients. The detection capacity of viral and internal genes is an essential parameter to consider and analyze during the assay. In this study, we analyze the performance of the two commercial RT-qPCR kits used in Chile, TaqMan™ 2019-nCoV Control Kit v1 (Thermo Fisher) and MaxCov19 (TAAG Genetics), for the COVID-19 diagnosis from nasopharyngeal swab samples (NPSs). Our results show a lower sensitivity of the TAAG kit compared to the Thermo Fisher kit, even in the detection of SARS-CoV-2 mutations associated with its variants. This study reinforces the relevance of evaluating the performance of RT-qPCR kits before being used massively since those with lower sensitivity can generate false negatives and produce outbreaks of local infections.
Identifiants
pubmed: 35812012
doi: 10.1155/2022/2594564
pmc: PMC9259548
doi:
Types de publication
Journal Article
Langues
eng
Pagination
2594564Commentaires et corrections
Type : ExpressionOfConcernIn
Informations de copyright
Copyright © 2022 Roberto Luraschi et al.
Déclaration de conflit d'intérêts
All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
J Virol Methods. 2021 Jan;287:113969
pubmed: 32918932
J Clin Virol. 2020 Aug;129:104510
pubmed: 32570045
J Med Virol. 2022 May;94(5):1825-1832
pubmed: 35023191
PLoS One. 2020 Dec 31;15(12):e0244824
pubmed: 33382830
Anal Biochem. 2008 Sep 15;380(2):315-22
pubmed: 18570886
Eur J Clin Microbiol Infect Dis. 2021 Jun;40(6):1303-1308
pubmed: 33512617
Nucleic Acids Res. 2001 May 1;29(9):e45
pubmed: 11328886
Anal Bioanal Chem. 2020 Apr;412(9):2009-2023
pubmed: 32052066
Front Med (Lausanne). 2020 Aug 13;7:521
pubmed: 32903503
Sci Rep. 2021 Nov 10;11(1):22013
pubmed: 34759300
J Clin Lab Anal. 2020 Oct;34(10):e23554
pubmed: 32977349
Emerg Microbes Infect. 2020 Dec;9(1):221-236
pubmed: 31987001
J Clin Virol. 2020 Jul;128:104412
pubmed: 32416600
Euro Surveill. 2020 Jan;25(3):
pubmed: 31992387
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
J Med Virol. 2021 Apr;93(4):2281-2286
pubmed: 33230819
J Appl Genet. 2013 Nov;54(4):391-406
pubmed: 24078518
J Clin Lab Anal. 2021 Jan;35(1):e23605
pubmed: 33320386