The Comparative Analysis of Two RT-qPCR Kits for Detecting SARS-CoV-2 Reveals a Higher Risk of False-Negative Diagnosis in Samples with High Quantification Cycles for Viral and Internal Genes.


Journal

The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale
ISSN: 1712-9532
Titre abrégé: Can J Infect Dis Med Microbiol
Pays: Egypt
ID NLM: 101226876

Informations de publication

Date de publication:
2022
Historique:
received: 26 08 2021
accepted: 02 06 2022
entrez: 11 7 2022
pubmed: 12 7 2022
medline: 12 7 2022
Statut: epublish

Résumé

The early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using the real-time quantitative polymerase chain reaction (RT-qPCR) as a gold-standard molecular tool has allowed to test and trace the viral spread and the isolation of COVID-19-infected patients. The detection capacity of viral and internal genes is an essential parameter to consider and analyze during the assay. In this study, we analyze the performance of the two commercial RT-qPCR kits used in Chile, TaqMan™ 2019-nCoV Control Kit v1 (Thermo Fisher) and MaxCov19 (TAAG Genetics), for the COVID-19 diagnosis from nasopharyngeal swab samples (NPSs). Our results show a lower sensitivity of the TAAG kit compared to the Thermo Fisher kit, even in the detection of SARS-CoV-2 mutations associated with its variants. This study reinforces the relevance of evaluating the performance of RT-qPCR kits before being used massively since those with lower sensitivity can generate false negatives and produce outbreaks of local infections.

Identifiants

pubmed: 35812012
doi: 10.1155/2022/2594564
pmc: PMC9259548
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2594564

Commentaires et corrections

Type : ExpressionOfConcernIn

Informations de copyright

Copyright © 2022 Roberto Luraschi et al.

Déclaration de conflit d'intérêts

All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

J Virol Methods. 2021 Jan;287:113969
pubmed: 32918932
J Clin Virol. 2020 Aug;129:104510
pubmed: 32570045
J Med Virol. 2022 May;94(5):1825-1832
pubmed: 35023191
PLoS One. 2020 Dec 31;15(12):e0244824
pubmed: 33382830
Anal Biochem. 2008 Sep 15;380(2):315-22
pubmed: 18570886
Eur J Clin Microbiol Infect Dis. 2021 Jun;40(6):1303-1308
pubmed: 33512617
Nucleic Acids Res. 2001 May 1;29(9):e45
pubmed: 11328886
Anal Bioanal Chem. 2020 Apr;412(9):2009-2023
pubmed: 32052066
Front Med (Lausanne). 2020 Aug 13;7:521
pubmed: 32903503
Sci Rep. 2021 Nov 10;11(1):22013
pubmed: 34759300
J Clin Lab Anal. 2020 Oct;34(10):e23554
pubmed: 32977349
Emerg Microbes Infect. 2020 Dec;9(1):221-236
pubmed: 31987001
J Clin Virol. 2020 Jul;128:104412
pubmed: 32416600
Euro Surveill. 2020 Jan;25(3):
pubmed: 31992387
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
J Med Virol. 2021 Apr;93(4):2281-2286
pubmed: 33230819
J Appl Genet. 2013 Nov;54(4):391-406
pubmed: 24078518
J Clin Lab Anal. 2021 Jan;35(1):e23605
pubmed: 33320386

Auteurs

Roberto Luraschi (R)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

Carlos Barrera-Avalos (C)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

Eva Vallejos-Vidal (E)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago, Chile.
Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.

Javiera Alarcón (J)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

Andrea Mella-Torres (A)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

Felipe Hernández (F)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

Ailen Inostroza-Molina (A)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

Daniel Valdés (D)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.

Mónica Imarai (M)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.

Claudio Acuña-Castillo (C)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.

Felipe E Reyes-López (FE)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.

Ana María Sandino (AM)

Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.

Classifications MeSH