Clinical feasibility of an advanced neonatal epidermal multiparameter continuous monitoring technology in a large public maternity hospital in Nairobi, Kenya.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 07 2022
Historique:
received: 25 01 2022
accepted: 04 07 2022
entrez: 9 7 2022
pubmed: 10 7 2022
medline: 14 7 2022
Statut: epublish

Résumé

Clinically feasible multiparameter continuous physiological monitoring technologies are needed for use in resource-constrained African healthcare facilities to allow for early detection of critical events and timely intervention for major morbidities in high-risk neonates. We conducted a prospective clinical feasibility study of a novel multiparameter continuous physiological monitoring technology in neonates at Pumwani Maternity Hospital in Nairobi, Kenya. To assess feasibility, we compared the performance of Sibel's Advanced Neonatal Epidermal (ANNE) technology to reference technologies, including Masimo's Rad-97 pulse CO-oximeter with capnography technology for heart rate (HR), respiratory rate (RR), and oxygen saturation (SpO

Identifiants

pubmed: 35810244
doi: 10.1038/s41598-022-16051-3
pii: 10.1038/s41598-022-16051-3
pmc: PMC9271033
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11722

Subventions

Organisme : Bill & Melinda Gates Foundation
ID : OPP12303136
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

United Nations Inter-agency Group for Child Mortality Estimation. Levels & Trends in Child Mortality: Report 2019, Estimates Developed by the United Nations Inter-agency Group for Child Mortality Estimation (United Nations Fund, 2019).
World Health Organization. Newborns: Improving Survival and Well-Being. https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality . Accessed 22 January 2021 (2020).
Mitchell, E. J. et al. Feasibility of using an Early Warning Score for preterm or low birthweight infants in a low-resource setting: Results of a mixed-methods study at a national referral hospital in Kenya. BMJ Open 10, e039061 (2020).
doi: 10.1136/bmjopen-2020-039061
Gathara, D. et al. Missed nursing care in newborn units: A cross-sectional direct observational study. BMJ Qual. Saf. 29, 19–30 (2020).
doi: 10.1136/bmjqs-2019-009363
Zhu, Z., Liu, T., Li, G., Li, T. & Inoue, Y. Wearable sensor systems for infants. Sensors (Basel) 15, 3721–3749 (2015).
doi: 10.3390/s150203721
Sahni, R. Continuous noninvasive monitoring in the neonatal ICU. Curr. Opin. Pediatr. 29, 141–148 (2017).
doi: 10.1097/MOP.0000000000000459
Coleman, J. et al. Evaluation of Sibel’s advanced neonatal epidermal (ANNE) wireless continuous physiological monitor in Nairobi, Kenya. PLoS One (2022) (accepted).
Ginsburg, A. S. et al. Multiparameter continuous physiological monitoring technologies in neonates among health care providers and caregivers at a Private Tertiary Hospital in Nairobi, Kenya: Feasibility, usability, and acceptability study. J. Med. Internet Res. 23, e29755 (2021).
doi: 10.2196/29755
Kinshella, M. W. et al. Qualitative study exploring the feasibility, usability and acceptability of neonatal continuous monitoring technologies at a public tertiary hospital in Nairobi, Kenya. BMJ Open 12, e053486 (2022).
doi: 10.1136/bmjopen-2021-053486
Ginsburg, A. S. et al. Evaluation of non-invasive continuous physiological monitoring devices for neonates in Nairobi, Kenya: A research protocol. BMJ Open 10, e035184 (2020).
doi: 10.1136/bmjopen-2019-035184
Karlen, W., Ansermino, J. M. & Dumont, G. Adaptive pulse segmentation and artifact detection in photoplethysmography for mobile applications. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 3131–3134 (2012).
pubmed: 23366589
Ginsburg, A. S. et al. Clinical feasibility of a contactless multiparameter continuous monitoring technology for neonates in a large public maternity hospital in Nairobi, Kenya. Sci. Rep. 12, 3097 (2022).
doi: 10.1038/s41598-022-07189-1
Bland, J. M. & Altman, D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1, 307–310 (1986).
doi: 10.1016/S0140-6736(86)90837-8
Coleman, J. et al. Identification of thresholds for accuracy comparisons of heart rate and respiratory rate in neonates. Gates Open Res. 5, 93 (2021).
doi: 10.12688/gatesopenres.13237.2
ISO 80601-2-61. (International Organization for Standardization (ISO) Central Secretariat, 2017).
Sendelbach, S. & Funk, M. Alarm fatigue: A patient safety concern. AACN Adv. Crit. Care 24, 378–386 (2013) ((quiz 387–378)).
doi: 10.4037/NCI.0b013e3182a903f9
Johnson, K. R., Hagadorn, J. I. & Sink, D. W. Alarm safety and alarm fatigue. Clin. Perinatol. 44, 713–728 (2017).
doi: 10.1016/j.clp.2017.05.005
Li, T. et al. Epidemiology of patient monitoring alarms in the neonatal intensive care unit. J. Perinatol. 38, 1030–1038 (2018).
doi: 10.1038/s41372-018-0095-x
Poets, C. F. & Southall, D. P. Noninvasive monitoring of oxygenation in infants and children: Practical considerations and areas of concern. Pediatrics 93, 737–746 (1994).
doi: 10.1542/peds.93.5.737
Fouzas, S., Priftis, K. N. & Anthracopoulos, M. B. Pulse oximetry in pediatric practice. Pediatrics 128, 740–752 (2011).
doi: 10.1542/peds.2011-0271
Okunlola, O., et al. Pulse oximeter performance, racial inequity, and the work ahead. Respir. Care 67(2), 252–257 (2022).
Barker, S. J. & Tremper, K. K. Pulse oximetry: Applications and limitations. Int. Anesthesiol. Clin. 25, 155–175 (1987).
doi: 10.1097/00004311-198702530-00010
Wukitsch, M. W., Petterson, M. T., Tobler, D. R. & Pologe, J. A. Pulse oximetry: Analysis of theory, technology, and practice. J. Clin. Monit. 4, 290–301 (1988).
doi: 10.1007/BF01617328
Kelleher, J. F. & Ruff, R. H. The penumbra effect: Vasomotion-dependent pulse oximeter artifact due to probe malposition. Anesthesiology 71, 787–791 (1989).
doi: 10.1097/00000542-198911000-00028
Norton, H. L. Variation in pulse oximetry readings: Melanin, not ethnicity, is the appropriate variable to use when investigating bias. Anaesthesia 77(3), 354–355 (2022).
Vesoulis, Z., Tims, A., Lodhi, H., Lalos, N. & Whitehead, H. Racial discrepancy in pulse oximeter accuracy in preterm infants. J. Perinatol. 42(1), 79–85 (2022).
Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E. & Valley, T. S. Racial bias in pulse oximetry measurement. N. Engl. J. Med. 383, 2477–2478 (2020).
doi: 10.1056/NEJMc2029240
Foglia, E. E. et al. The effect of skin pigmentation on the accuracy of pulse oximetry in infants with hypoxemia. J. Pediatr. 182, 375-377.e372 (2017).
doi: 10.1016/j.jpeds.2016.11.043
Knight, M. J., Subbe, C. P. & Inada-Kim, M. Racial discrepancies in oximetry: Where do we stand?. Anaesthesia 77, 129–131 (2022).
doi: 10.1111/anae.15635
Browne, S.H., Bernstein, M. & Bickler, P.E. Accuracy of samsung smartphone integrated pulse oximetry meets full FDA clearance standards for clinical use. medRxiv. https://doi.org/10.1101/2021.02.17.21249755 (2021).
Huhn, S. et al. The impact of wearable technologies in health research: Scoping review. JMIR Mhealth Uhealth 10, e34384 (2022).
doi: 10.2196/34384
Dehkordi, P. et al. Pulse rate variability compared with heart rate variability in children with and without sleep disordered breathing. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2013, 6563–6566 (2013).
pubmed: 24111246

Auteurs

Amy Sarah Ginsburg (AS)

Clinical Trials Center, University of Washington, Seattle, Building 29, Suite 250, 6200 NE 74th Street, Seattle, WA, 98115, USA. messageforamy@gmail.com.

Sahar Zandi Nia (S)

Department of Anesthesiology, The University of British Columbia, Vancouver, BC, Canada.

Dorothy Chomba (D)

Department of Pediatrics, Aga Khan University, Nairobi, Kenya.

Millicent Parsimei (M)

Department of Pediatrics, Aga Khan University, Nairobi, Kenya.

Dustin Dunsmuir (D)

Department of Anesthesiology, The University of British Columbia, Vancouver, BC, Canada.

Mary Waiyego (M)

Pumwani Maternity Hospital, Nairobi, Kenya.

Jesse Coleman (J)

Evaluation of Technologies for Neonates in Africa, Seattle, USA.

Roseline Ochieng (R)

Department of Pediatrics, Aga Khan University, Nairobi, Kenya.

Guohai Zhou (G)

Center for Clinical Investigation, Brigham and Women's Hospital, Boston, MA, USA.

William M Macharia (WM)

Department of Pediatrics, Aga Khan University, Nairobi, Kenya.

J Mark Ansermino (JM)

Department of Anesthesiology, The University of British Columbia, Vancouver, BC, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH