Thermal Conductivity of Nanoporous Materials: Where Is the Limit?
aerogels
nanocellular polymers
nanoporous materials
thermal conductivity
thermal superinsulators
Journal
Polymers
ISSN: 2073-4360
Titre abrégé: Polymers (Basel)
Pays: Switzerland
ID NLM: 101545357
Informations de publication
Date de publication:
23 Jun 2022
23 Jun 2022
Historique:
received:
30
05
2022
revised:
14
06
2022
accepted:
15
06
2022
entrez:
9
7
2022
pubmed:
10
7
2022
medline:
10
7
2022
Statut:
epublish
Résumé
Nowadays, our society is facing problems related to energy availability. Owing to the energy savings that insulators provide, the search for effective insulating materials is a focus of interest. Since the current insulators do not meet the increasingly strict requirements, developing materials with a greater insulating capacity is needed. Until now, several nanoporous materials have been considered as superinsulators achieving thermal conductivities below that of the air 26 mW/(m K), like nanocellular PMMA/TPU, silica aerogels, and polyurethane aerogels reaching 24.8, 10, and 12 mW/(m K), respectively. In the search for the minimum thermal conductivity, still undiscovered, the first step is understanding heat transfer in nanoporous materials. The main features leading to superinsulation are low density, nanopores, and solid interruptions hindering the phonon transfer. The second crucial condition is obtaining reliable thermal conductivity measurement techniques. This review summarizes these techniques, and data in the literature regarding the structure and thermal conductivity of two nanoporous materials, nanocellular polymers and aerogels. The key conclusion of this analysis specifies that only steady-state methods provide a reliable value for thermal conductivity of superinsulators. Finally, a theoretical discussion is performed providing a detailed background to further explore the lower limit of superinsulation to develop more efficient materials.
Identifiants
pubmed: 35808603
pii: polym14132556
doi: 10.3390/polym14132556
pmc: PMC9269606
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Subventions
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : FPU17/03299
Organisme : Junta de Castilla y León
ID : VA202P20
Organisme : Ente Público Regional de la Energía de Castilla y León
ID : n/a
Organisme : Regional Government of Castilla y León
ID : CLU-2019-04
Organisme : European Regional Development Fund
ID : POCI-01-0145-FEDER-006910, CENTRO-01-0145-FEDER-0295, CLU-2019-04
Organisme : Fundação para a Ciência e Tecnologia
ID : UIDB/EQU/00102/2020, PTDC/EQU-EQU/29533/2017, BLUEBIO/0003/2019
Références
Polymers (Basel). 2020 Jun 03;12(6):
pubmed: 32503163
Nanoscale. 2020 Jun 25;12(24):13064-13085
pubmed: 32542255
Materials (Basel). 2019 Mar 07;12(5):
pubmed: 30866572
Angew Chem Int Ed Engl. 2017 Apr 18;56(17):4753-4756
pubmed: 28332751
ACS Appl Mater Interfaces. 2017 May 31;9(21):18222-18230
pubmed: 28481507
J Biotechnol. 2002 Mar;90(1):27-53
pubmed: 12069045
Adv Colloid Interface Sci. 2016 Oct;236:1-27
pubmed: 27321857
Sci Rep. 2018 Jul 12;8(1):10537
pubmed: 30002417
Nanomaterials (Basel). 2022 Apr 30;12(9):
pubmed: 35564231
Materials (Basel). 2020 Mar 10;13(5):
pubmed: 32164320
Rev Sci Instrum. 2019 May;90(5):054901
pubmed: 31153257
J Phys Chem B. 2017 May 4;121(17):4600-4609
pubmed: 28362103