Interspecific variation in leaf traits, photosynthetic light response, and whole-plant productivity in amaranths (Amaranthus spp. L.).


Journal

PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081

Informations de publication

Date de publication:
2022
Historique:
received: 15 12 2021
accepted: 14 06 2022
entrez: 30 6 2022
pubmed: 1 7 2022
medline: 6 7 2022
Statut: epublish

Résumé

Photosynthetic light response curve parameters help us understand the interspecific variation in photosynthetic traits, leaf acclimation status, carbon uptake, and plant productivity in specific environments. These parameters are also influenced by leaf traits which rely on species and growth environment. In accessions of four amaranth species (Amaranthus. hybridus, A. dubius, A. hypochondriacus, and A. cruentus), we determined variations in the net photosynthetic light response curves and leaf traits, and analysed the relationships between maximum gross photosynthetic rate, leaf traits, and whole-plant productivity. Non-rectangular hyperbolae were used for the net photosynthesis light response curves. Maximum gross photosynthetic rate (Pgmax) was the only variant parameter among the species, ranging from 22.29 to 34.21 μmol m-2 s-1. Interspecific variation existed for all the leaf traits except leaf mass per area and leaf inclination angle. Stomatal conductance, nitrogen, chlorophyll, and carotenoid contents, as well as leaf area correlated with Pgmax. Stomatal conductance and leaf nitrogen explained much of the variation in Pgmax at the leaf level. At the plant level, the slope between absolute growth rate and leaf area showed a strong linear relationship with Pgmax. Overall, A. hybridus and A. cruentus exhibited higher Pgmax at the leaf level and light use efficiency at the whole-plant level than A. dubius, and A. hypochondriacus. Thus, A. hybridus and A. cruentus tended to be more efficient with respect to carbon assimilation. These findings highlight the correlation between leaf photosynthetic characteristics, other leaf traits, and whole plant productivity in amaranths. Future studies may explore more species and accessions of Amaranthus at different locations or light environments.

Identifiants

pubmed: 35771745
doi: 10.1371/journal.pone.0270674
pii: PONE-D-21-39568
pmc: PMC9246199
doi:

Substances chimiques

Chlorophyll 1406-65-1
Carbon 7440-44-0
Nitrogen N762921K75

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0270674

Déclaration de conflit d'intérêts

The authors have declared that no competing interests exist.

Références

Oecologia. 2001 Jun;128(1):15-23
pubmed: 28547085
Appl Biochem Biotechnol. 2015 May;176(1):86-100
pubmed: 25832179
Plant Cell Environ. 2006 Apr;29(4):691-700
pubmed: 17080618
Plant Signal Behav. 2017 Aug 3;12(8):e1356534
pubmed: 28786730
J Exp Bot. 2005 Jan;56(411):435-47
pubmed: 15642715
Ann Bot. 2012 May;109(6):1149-57
pubmed: 22442344
Plant Physiol. 1987 Jul;84(3):959-63
pubmed: 16665551
Tree Physiol. 2001 Aug;21(12-13):959-67
pubmed: 11498343
Photosynth Res. 1995 Nov;46(1-2):129-39
pubmed: 24301575
Planta. 2004 Mar;218(5):793-802
pubmed: 14648116
J Exp Bot. 2015 May;66(9):2437-47
pubmed: 25788730
Front Plant Sci. 2017 May 03;8:681
pubmed: 28515734
New Phytol. 2019 Aug;223(3):1073-1105
pubmed: 30802971
An Acad Bras Cienc. 2016;88 Suppl 1:467-77
pubmed: 26959320
New Phytol. 2009 Mar;181(4):890-900
pubmed: 19140935
Photosynth Res. 1983 Jan;4(1):171-8
pubmed: 24458396
Ann Bot. 2002 Apr;89(4):451-8
pubmed: 12096806
New Phytol. 2009;181(3):532-52
pubmed: 19140947
Oecologia. 1989 Jan;78(1):9-19
pubmed: 28311896
Food Res Int. 2015 Dec;78:361-368
pubmed: 28433304
J Exp Bot. 2004 May;55(400):1157-66
pubmed: 15107451
Plant Physiol. 2010 Jan;152(1):366-73
pubmed: 19939944
Planta. 1990 Sep;182(2):161-8
pubmed: 24197090
Am J Bot. 2000 Mar;87(3):412-7
pubmed: 10719002
Curr Opin Biotechnol. 2012 Apr;23(2):215-20
pubmed: 22296828
Plant Physiol. 1993 Mar;101(3):1013-1019
pubmed: 12231754
Oecologia. 2010 Sep;164(1):53-63
pubmed: 20425123
Plant Physiol. 2017 Apr;173(4):2163-2179
pubmed: 28184008
Planta. 2001 Nov;214(1):135-41
pubmed: 11762163
Front Plant Sci. 2020 Apr 24;11:374
pubmed: 32411151
Food Chem. 2018 Nov 30;267:376-386
pubmed: 29934181
Oecologia. 1981 Mar;48(3):371-376
pubmed: 28309755
Psychol Methods. 2003 Dec;8(4):434-47
pubmed: 14664681
Biol Rev Camb Philos Soc. 2007 Nov;82(4):591-605
pubmed: 17944619
Front Psychol. 2013 Nov 26;4:863
pubmed: 24324449
Ann Bot. 2018 Apr 18;121(5):821-832
pubmed: 29309513
Planta. 2001 Sep;213(5):794-801
pubmed: 11678285
New Phytol. 2009;182(3):565-588
pubmed: 19434804
Photosynth Res. 2020 Jul;145(1):5-14
pubmed: 31654195
Front Plant Sci. 2020 Mar 24;11:268
pubmed: 32265952
Ann Bot. 2012 Aug;110(3):731-41
pubmed: 22665700
Plant Physiol. 1983 Nov;73(3):555-9
pubmed: 16663257

Auteurs

Mildred Osei-Kwarteng (M)

Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany.
Department of Horticulture, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Nyankpala, Tamale, Ghana.

Emmanuel Ayipio (E)

CSIR-Savannah Agricultural Research Institute, Nyankpala, Ghana.
Auburn University, Department of Horticulture, Auburn, Alabama, United States of America.

Dany Moualeu-Ngangue (D)

Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany.

Gerhard Buck-Sorlin (G)

IRHS, INRAE, Institut Agro, Université d'Angers, Beaucouzé, France.

Hartmut Stützel (H)

Institute of Horticultural Production Systems, Leibniz University Hannover, Hannover, Germany.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH