The Sleep Revolution project: the concept and objectives.
P4 medicine
apnea-hypopnea index
costs
digital management platform
e-health
exercise
lifestyles
machine learning
mobile application
neurocognitive tests
participatory
patient-reported outcome measures
polysomnography
self-applied home testing
sleep diary
sleep revolution
telemedicine
Journal
Journal of sleep research
ISSN: 1365-2869
Titre abrégé: J Sleep Res
Pays: England
ID NLM: 9214441
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
revised:
19
04
2022
received:
01
04
2022
accepted:
19
04
2022
pubmed:
1
7
2022
medline:
30
7
2022
entrez:
30
6
2022
Statut:
ppublish
Résumé
Obstructive sleep apnea is linked to severe health consequences such as hypertension, daytime sleepiness, and cardiovascular disease. Nearly a billion people are estimated to have obstructive sleep apnea with a substantial economic burden. However, the current diagnostic parameter of obstructive sleep apnea, the apnea-hypopnea index, correlates poorly with related comorbidities and symptoms. Obstructive sleep apnea severity is measured by counting respiratory events, while other physiologically relevant consequences are ignored. Furthermore, as the clinical methods for analysing polysomnographic signals are outdated, laborious, and expensive, most patients with obstructive sleep apnea remain undiagnosed. Therefore, more personalised diagnostic approaches are urgently needed. The Sleep Revolution, funded by the European Union's Horizon 2020 Research and Innovation Programme, aims to tackle these shortcomings by developing machine learning tools to better estimate obstructive sleep apnea severity and phenotypes. This allows for improved personalised treatment options, including increased patient participation. Also, implementing these tools will alleviate the costs and increase the availability of sleep studies by decreasing manual scoring labour. Finally, the project aims to design a digital platform that functions as a bridge between researchers, patients, and clinicians, with an electronic sleep diary, objective cognitive tests, and questionnaires in a mobile application. These ambitious goals will be achieved through extensive collaboration between 39 centres, including expertise from sleep medicine, computer science, and industry and by utilising tens of thousands of retrospectively and prospectively collected sleep recordings. With the commitment of the European Sleep Research Society and Assembly of National Sleep Societies, the Sleep Revolution has the unique possibility to create new standardised guidelines for sleep medicine.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13630Informations de copyright
© 2022 European Sleep Research Society.
Références
Aiello, K. D., Caughey, W. G., Nelluri, B., Sharma, A., Mookadam, F., & Mookadam, M. (2016). Effect of exercise training on sleep apnea: A systematic review and meta-analysis. Respiratory Medicine, 116, 85-92. https://doi.org/10.1016/j.rmed.2016.05.015
Amiri, S., Hasani, J., & Satkin, M. (2021). Effect of exercise training on improving sleep disturbances: A systematic review and meta-analysis of randomized control trials. Sleep Medicine, 84, 205-218. https://doi.org/10.1016/j.sleep.2021.05.013
Arnardottir, E. S., Islind, A. S., & Óskarsdóttir, M. (2021). The future of sleep measurements: A review and perspective. Sleep Medicine Clinics, 16(3), 447-464. https://doi.org/10.1016/j.jsmc.2021.05.004
Arnardottir, E. S., Verbraecken, J., Gonçalves, M., Gjerstad, M. D., Grote, L., Puertas, F. J., Mihaicuta, S., WT, M. N., Parrino, L., & The National Representatives as Study Collaborators. (2016). Variability in recording and scoring of respiratory events during sleep in Europe: A need for uniform standards. Journal of Sleep Research, 25(2), 144-157. https://doi.org/10.1111/jsr.12353
Azarbarzin, A., Sands, S. A., Stone, K. L., Taranto-Montemurro, L., Messineo, L., Terrill, P. I., Ancoli-Israel, S., Ensurd, K., Purcell, S., White, D. P., Redline, S., & Wellman, A. (2019). The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality: The osteoporotic fractures in men study and the sleep heart health study. European Heart Journal, 40(14), 1149-1157. https://doi.org/10.1093/eurheartj/ehy624
Benjafield, A. V., Ayas, N. T., Eastwood, P. R., Heinzer, R., Ip, M. S. M., Morrell, M. J., Nunez, C. M., Patel, S. R., Penzel, T., Pépin, J. L., Peppard, P. E., Sinha, S., Tufik, S., Valentine, K., & Malhotra, A. (2019). Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. The Lancet Respiratory Medicine, 7(8), 687-698. https://doi.org/10.1016/S2213-2600(19)30198-5
Berry, R. B., Brooks, R., Gamaldo, C., Harding, S. M., Lloyd, R. M., Marcus, C. L., & Vaughn, B. V. (2014). The AASM manual for the scoring of sleep and associated events: Rules, terminology, and technical specification, version 2.03. American Academy of Sleep.
Berry, R. B., Brooks, R., Gamaldo, C. E., Harding, S. M., Lloyd, R. M., Quan, S. F., & Vaughn, B. V. (2020). The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications, version 2.6. American Academy of Sleep Medicine.
Bonsignore, M. R., Hedner, J., & ESADA study group. (2018). The European Sleep Apnoea Database (ESADA) ERS Clinical Research Collaboration: Past, present and future. The European Respiratory Journal, 52(4), 1801666. https://doi.org/10.1183/13993003.01666-2018
Camacho, M., Certal, V., Abdullatif, J., Zaghi, S., Ruoff, C. M., Capasso, R., & Kushida, C. A. (2015). Myofunctional therapy to treat obstructive sleep apnea: A systematic review and meta-analysis. Sleep, 38(5), 669-675. https://doi.org/10.5665/sleep.4652
Carney, C. E., Buysse, D. J., Ancoli-Israel, S., Edinger, J. D., Krystal, A. D., Lichstein, K. L., & Morin, C. M. (2012). The consensus sleep diary: Standardizing prospective sleep self-monitoring. Sleep, 35(2), 287-302. https://doi.org/10.5665/sleep.1642
Dinges, D. F., & Powell, J. W. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Beh Res Meth Instr Comp, 17, 652-655.
Fischer, J., Dogas, Z., Bassetti, C. L., Berg, S., Grote, L., Jennum, P., Levy, P., Mihaicuta, S., Nobili, L., Riemann, D., FJP, C., Raschke, F., Skene, D. J., Stanley, N., & Pevernagie, D. (2012). Standard procedures for adults in accredited sleep medicine centres in Europe. Journal of Sleep Research, 21(4), 357-368. https://doi.org/10.1111/j.1365-2869.2011.00987.x
Flores, M., Glusman, G., Brogaard, K., Price, N. D., & Hood, L. (2013). P4 medicine: How systems medicine will transform the healthcare sector and society. Personalized Medicine, 10(6), 565-576. https://doi.org/10.2217/pme.13.57
Goldstein, C. A., Berry, R. B., Kent, D. T., Kristo, D. A., Seixas, A. A., Redline, S., & Westover, M. B. (2020). Artificial intelligence in sleep medicine: Background and implications for clinicians. Journal of Clinical Sleep Medicine, 16(4), 609-618. https://doi.org/10.5664/jcsm.8388
Gouveris, H., Selivanova, O., Bausmer, U., Goepel, B., & Mann, W. (2010). First-night-effect on polysomnographic respiratory sleep parameters in patients with sleep-disordered breathing and upper airway pathology. European Archives of Oto-Rhino-Laryngology, 267(9), 1449-1453. https://doi.org/10.1007/s00405-010-1205-3
Grandner, M. A., Watson, N. F., Kay, M., Ocaño, D., & Kientz, J. A. (2018). Addressing the need for validation of a touchscreen psychomotor vigilance task: Important considerations for sleep health research. Sleep Health, 4(5), 387-389. https://doi.org/10.1016/j.sleh.2018.08.003
Hsu, B., Emperumal, C. P., Grbach, V. X., Padilla, M., & Enciso, R. (2020). Effects of respiratory muscle therapy on obstructive sleep apnea: A systematic review and meta-analysis. Journal of Clinical Sleep Medicine, 16(5), 785-801. https://doi.org/10.5664/jcsm.8318
Huttunen, R., Leppänen, T., Duce, B., Oksenberg, A., Myllymaa, S., Töyräs, J., & Korkalainen, H. (2021). Assessment of obstructive sleep apnea-related sleep fragmentation utilizing deep learning-based sleep staging from photoplethysmography. Sleep, 44(10), 1-10. https://doi.org/10.1093/sleep/zsab142
Islind, A. S., Lindroth, T., Lundin, J., & Steineck, G. (2019). Co-designing a digital platform with boundary objects: Bringing together heterogeneous users in healthcare. Health Technology, 9, 425-438. https://doi.org/10.1007/s12553-019-00332-5
Jóhannsdóttir, K. R., Ferretti, D., Árnadóttir, B. S., & Jónsdóttir, M. K. (2021). Objective measures of cognitive performance in sleep disorder research. Sleep Medicine Clinics, 16(4), 575-593. https://doi.org/10.1016/j.jsmc.2021.08.002
Kainulainen, S., Duce, B., Korkalainen, H., Leino, A., Huttunen, R., Kalevo, L., Arnardottir, E. S., Kulkas, A., Myllymaa, S., Töyräs, J., & Leppänen, T. (2020). Increased nocturnal arterial pulsation frequencies of obstructive sleep apnoea patients is associated with an increased number of lapses in a psychomotor vigilance task. ERJ Open Res, 6(4), 00277-2020. https://doi.org/10.1183/23120541.00277-2020
Kainulainen, S., Korkalainen, H., Sigurdardóttir, S., Myllymaa, S., Serwatko, M., Sigurdardóttir, S. Þ., Clausen, M., Leppänen, T., & Arnardottir, E. S. (2021). Comparison of EEG signal characteristics between polysomnography and self applied somnography setup in a pediatric cohort. IEEE Access, 9, 110916-110926. https://doi.org/10.1109/ACCESS.2021.3099987
Kainulainen, S., Töyräs, J., Oksenberg, A., Korkalainen, H., Afara, I. O., Leino, A., Kalevo, L., Nikkonen, S., Godoth, N., Kulkas, A., Myllymaa, S., & Leppänen, T. (2020). Power spectral densities of nocturnal pulse oximetry signals differ in OSA patients with and without daytime sleepiness. Sleep Medicine, 73, 231-237. https://doi.org/10.1016/j.sleep.2020.07.015
Korkalainen, H., Aakko, J., Nikkonen, S., Kainulainen, S., Leino, A., Duce, B., Afara, I. O., Myllymaa, S., Toyras, J., & Leppanen, T. (2019). Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep apnea. IEEE Journal of Biomedical and Health Informatics, 24, 2073-2081. https://doi.org/10.1109/JBHI.2019.2951346
Korkalainen, H., Leppanen, T., Duce, B., Kainulainen, S., Aakko, J., Leino, A., Kalevo, L., Afara, I. O., Myllymaa, S., & Toyras, J. (2021). Detailed assessment of sleep architecture with deep learning and shorter epoch-to-epoch duration reveals sleep fragmentation of patients with obstructive sleep apnea. IEEE Journal of Biomedical and Health Informatics, 25(7), 2567-2574. https://doi.org/10.1109/jbhi.2020.3043507
Kulkas, A., Tiihonen, P., Eskola, K., Julkunen, P., Mervaala, E., & Töyräs, J. (2013). Novel parameters for evaluating severity of sleep disordered breathing and for supporting diagnosis of sleep apnea-hypopnea syndrome. Journal of Medical Engineering & Technology, 37(2), 135-143. https://doi.org/10.3109/03091902.2012.754509
Lins-Filho, O. L., Pedrosa, R. P., Gomes, J. M. L., Dantas Moraes, S. L., Vasconcelos, B. C. E., Lemos, C. A. A., & Pellizzer, E. P. (2020). Effect of exercise training on subjective parameters in patients with obstructive sleep apnea: A systematic review and meta-analysis. Sleep Medicine, 69, 1-7. https://doi.org/10.1016/j.sleep.2019.12.022
Lins-Filho, O., Porto Aguiar, J. L., Vieira de Almeida, J. R., Soares, A. H., Ritti-Dias, R., Julia da Silva, M., & Pedrosa, R. P. (2021). Effect of exercise training on body composition in patients with obstructive sleep apnea: A systematic review and meta-analysis. Sleep Medicine, 87, 105-113. https://doi.org/10.1016/j.sleep.2021.08.027
Malhotra, A., Crocker, M. E., Willes, L., Kelly, C., Lynch, S., & Benjafield, A. V. (2018). Patient engagement using new technology to improve adherence to positive airway pressure therapy: A retrospective analysis. Chest, 153(4), 843-850. https://doi.org/10.1016/j.chest.2017.11.005
Mediano, O., Romero-Peralta, S., Resano, P., Cano-Pumarega, I., Sanchez-de-la-Torre, M., Castillo-Garcia, M., Martínez-Sánchez, A. B., Ortigado, A., & Garcia-Rio, F. (2019). Obstructive sleep apnea: Emerging treatments targeting the genioglossus muscle. Journal of Clinical Medicine, 8(10), 1754. https://doi.org/10.3390/jcm8101754
Mendelson, M., Bailly, S., Marillier, M., Flore, P., Borel, J. C., Vivodtzev, I., Doutreleau, S., Verges, S., Tamisier, R., & Pépin, J. L. (2018). Obstructive sleep apnea syndrome, objectively measured physical activity and exercise training interventions: A systematic review and meta-analysis. Frontiers in Neurology, 9, 73. https://doi.org/10.3389/fneur.2018.00073
Muraja-Murro, A., Kulkas, A., Hiltunen, M., Kupari, S., Hukkanen, T., Tiihonen, P., Mervaala, E., & Töyräs, J. (2013). The severity of individual obstruction events is related to increased mortality rate in severe obstructive sleep apnea. Journal of Sleep Research, 22(6), 663-669. https://doi.org/10.1111/jsr.12070
Muraja-Murro, A., Kulkas, A., Hiltunen, M., Kupari, S., Hukkanen, T., Tiihonen, P., Mervaala, E., & Töyräs, J. (2014). Adjustment of apnea-hypopnea index with severity of obstruction events enhances detection of sleep apnea patients with the highest risk of severe health consequences. Sleep & Breathing, 18(3), 641-647. https://doi.org/10.1007/s11325-013-0927-z
Myers, K. A., Mrkobrada, M., & Simel, D. L. (2013). Does this patient have obstructive sleep apnea?: The rational clinical examination systematic review. JAMA, 310(7), 731-741. https://doi.org/10.1001/jama.2013.276185
Nikkonen, S., Afara, I. O., Leppänen, T., & Töyräs, J. (2019). Artificial neural network analysis of the oxygen saturation signal enables accurate diagnostics of sleep apnea. Scientific Reports, 9(1), 13200. https://doi.org/10.1038/s41598-019-49330-7
Nikkonen, S., Korkalainen, H., Kainulainen, S., Myllymaa, S., Leino, A., Kalevo, L., Oksenberg, A., Leppänen, T., & Töyräs, J. (2020). Estimating daytime sleepiness with previous night electroencephalography, electrooculography, and electromyography spectrograms in patients with suspected sleep apnea using a convolutional neural network. Sleep, 43(12), zsaa106. https://doi.org/10.1093/sleep/zsaa106
Nikkonen, S., Korkalainen, H., Leino, A., Myllymaa, S., Duce, B., Leppanen, T., & Toyras, J. (2021). Automatic respiratory event scoring in obstructive sleep apnea using a long short-term memory neural network. IEEE Journal of Biomedical and Health Informatics, 25(8), 2917-2927. https://doi.org/10.1109/jbhi.2021.3064694
Óskarsdóttir, M., Islind, A. S., August, E., Arnardóttir, E. S., Patou, F., & Maier, A. M. (2022). Importance of getting enough sleep and daily activity data to assess variability: Longitudinal observational study. JMIR Form Res, 6(2), e31807. https://doi.org/10.2196/31807
Pevernagie, D., Bauters, F. A., & Hertegonne, K. (2021). The role of patient-reported outcomes in sleep measurements. Sleep Medicine Clinics, 16(4), 595-606. https://doi.org/10.1016/j.jsmc.2021.07.001
Pevernagie, D. A., Gnidovec-Strazisar, B., Grote, L., Heinzer, R., McNicholas, W. T., Penzel, T., Randerath, W., Schiza, S., Verbraecken, J., & Arnardottir, E. S. (2020). On the rise and fall of the apnea-hypopnea index: A historical review and critical appraisal. Journal of Sleep Research, 29, e13066. https://doi.org/10.1111/jsr.13066
Randerath, W., Bassetti, C. L., Bonsignore, M. R., Farre, R., Ferini-Strambi, L., Grote, L., Hedner, J., Kohler, M., Martinez-Garcia, M. A., Mihaicuta, S., Montserrat, J., Pepin, J. L., Pevernagie, D., Pizza, F., Polo, O., Riha, R., Ryan, S., Verbraecken, J., & McNicholas, W. T. (2018). Challenges and perspectives in obstructive sleep apnoea: Report by an ad hoc working group of the Sleep Disordered Breathing Group of the European Respiratory Society and the European Sleep Research Society. The European Respiratory Journal, 52(3), 1702616. https://doi.org/10.1183/13993003.02616-2017
Randerath, W., Verbraecken, J., de Raaff, C. A. L., Hedner, J., Herkenrath, S., Hohenhorst, W., Jakob, T., Marrone, O., Marklund, M., WT, M. N., Morgan, R. L., Pepin, J. L., Schiza, S., Skoetz, N., Smyth, D., Steier, J., Tonia, T., Trzepizur, W., van Mechelen, P. H., & Wijkstra, P. (2021). European Respiratory Society guideline on non-CPAP therapies for obstructive sleep apnoea. European Respiratory Review, 30(162), 210200. https://doi.org/10.1183/16000617.0200-2021
Rueda, J. R., Mugueta-Aguinaga, I., Vilaró, J., & Rueda-Etxebarria, M. (2020). Myofunctional therapy (oropharyngeal exercises) for obstructive sleep apnoea. Cochrane Database of Systematic Reviews, 11(11), Cd013449. https://doi.org/10.1002/14651858.CD013449.pub2
Sforza, E., Roche, F., Chapelle, C., & Pichot, V. (2019). Internight variability of apnea-hypopnea index in obstructive sleep apnea using ambulatory polysomnography. Frontiers in Physiology, 10, 849. https://doi.org/10.3389/fphys.2019.00849
Stavrou, V. T., Astara, K., Tourlakopoulos, K. N., Papayianni, E., Boutlas, S., Vavougios, G. D., Daniil, Z., & Gourgoulianis, K. I. (2021). Obstructive sleep apnea syndrome: The effect of acute and chronic responses of exercise. Front Med (Lausanne), 8, 806924. https://doi.org/10.3389/fmed.2021.806924