Groundwater discharge as a driver of methane emissions from Arctic lakes.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 06 2022
27 06 2022
Historique:
received:
16
07
2021
accepted:
06
06
2022
entrez:
27
6
2022
pubmed:
28
6
2022
medline:
30
6
2022
Statut:
epublish
Résumé
Lateral CH
Identifiants
pubmed: 35760781
doi: 10.1038/s41467-022-31219-1
pii: 10.1038/s41467-022-31219-1
pmc: PMC9237097
doi:
Substances chimiques
Methane
OP0UW79H66
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3667Informations de copyright
© 2022. The Author(s).
Références
Dlugokencky, E. J., Nisbet, E. G., Fisher, R. & Lowry, D. Global atmospheric methane: budget, changes and dangers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 2058–2072 (2011).
doi: 10.1098/rsta.2010.0341
IPCC. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergov. Panel Clim. Chang. Work. Gr. I Contrib. to IPCC Fifth Assess. Rep. (AR5) (Cambridge Univ Press, New York, 2013).
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
doi: 10.1038/ngeo2578
Tan, Z. & Zhuang, Q. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ. Res. Lett. 10, 054016 (2015).
Tan, Z. & Zhuang, Q. Methane emissions from pan-Arctic lakes during the 21st century: an analysis with process-based models of lake evolution and biogeochemistry. J. Geophys. Res. Biogeoscience 120, 2641–2653 (2015).
doi: 10.1002/2015JG003184
Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).
doi: 10.1029/2004GB002238
DelSontro, T., del Giorgio, P. A. & Prairie, Y. T. No longer a paradox: the interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes. Ecosystems 21, 1073–1087 (2018).
doi: 10.1007/s10021-017-0205-1
Bastviken, D. in Encyclopedia of Inland Waters. (ed. Likens, G. E.) 783–805 (Academic Press, 2009).
Martinez-Cruz, K., Sepulveda-Jauregui, A., Water Anthony, K. & Thalasso, F. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes. Biogeoscience 12, 4595–4606 (2015).
doi: 10.5194/bg-12-4595-2015
Thottathil, S. D., Reis, P. C. J., del Giorgio, P. A. & Prairie, Y. T. The extent and regulation of summer methane oxidation in northern lakes. J. Geophys. Res. Biogeosciences 123, 3216–3230 (2018).
doi: 10.1029/2018JG004464
Connolly, C. T., Bayani Cardenas, M., Burkart, G. A., Spencer, R. G. M. & McClelland, J. W. Groundwater as a major source of dissolved organic matter to Arctic coastal waters. Nat. Commun. 11, 1479 (2020).
pubmed: 32198391
pmcid: 7083844
doi: 10.1038/s41467-020-15250-8
Dabrowski, J. S. et al. Using radon to quantify groundwater discharge and methane fluxes to a shallow, tundra lake on the Yukon-Kuskokwim Delta, Alaska. Biogeochemistry 148, 69–89 (2020).
doi: 10.1007/s10533-020-00647-w
Paytan, A. et al. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study. Proc. Natl Acad. Sci. USA 112, 201417392 (2015).
doi: 10.1073/pnas.1417392112
Kling, G. W., Kipphut, G. W. & Miller, M. C. The flux of CO
doi: 10.1007/BF00013449
Striegl, R. & Michmerhuizen, C. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol. Oceanogr. 43, 1519–1529 (1998).
doi: 10.4319/lo.1998.43.7.1519
O’Connor, M. T., Bayani Cardenas, M., Neilson, B. T., Nicholaides, K. D. & Kling, G. W. Active layer groundwater flow: The interrelated effects of stratigraphy, thaw, and topography. Water Resour. Res. 55, 6555–6576 (2019).
doi: 10.1029/2018WR024636
Saarnio, S., Alm, J. & Silvola, J. Seasonal variation in CH
pubmed: 28307231
doi: 10.1007/s004420050176
Lupascu, M., Wadham, J. L., Hornibrook, E. R. C. & Pancost, R. D. Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: a comparison with non-permafrost Northern wetlands. Arct., Antarct. Alp. Res. 44, 469–482 (2012).
doi: 10.1657/1938-4246-44.4.469
Jansen, J. et al. Climate-sensitive controls on large spring emissions of CH
doi: 10.1029/2019JG005094
Kuhn, M. et al. BAWLD-CH
doi: 10.5194/essd-13-5151-2021
Hershey, A. E., Northington, R. M., Hart-Smith, J., Bostick, M. & Whalen, S. C. Methane efflux and oxidation, and use of methane-derived carbon by larval Chironomini, in arctic lake sediments. Limnol. Oceanogr. 60, 276–285 (2015).
doi: 10.1002/lno.10023
Bretz, K. A. & Whalen, S. C. Methane cycling dynamics in sediments of Alaskan Arctic Foothill lakes. Inl. Waters 4, 65–78 (2014).
doi: 10.5268/IW-4.1.637
Lofton, D. D., Whalen, S. C. & Hershey, A. E. Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes. Hydrobiologia 721, 209–222 (2014).
doi: 10.1007/s10750-013-1663-x
Gentzel, T., Hershey, A. E., Rublee, P. A. & Whalen, S. C. Net sediment production of methane, distribution of methanogens and methane-oxidizing bacteria, and utilization of methane-derived carbon in an arctic lake. Inl. Waters 2, 77–88 (2012).
doi: 10.5268/IW-2.2.416
Cunada, C. L., Lesack, F. W. & Tank, S. E. Methane emission dynamics among CO
doi: 10.1007/s10533-021-00853-0
Lecher, A. L. Groundwater discharge in the Arctic: a review of studies and implications for biogeochemistry. https://doi.org/10.3390/hydrology4030041 (2017).
Woo, M.-K. Permafrost Hydrology (Springer-Verlag, 2012).
Drexler, J. Z., Bedford, B. L., Scognamiglio, R. & Siegel, D. I. Fine-scale characteristics of groundwater flow in a peatland. Hydrol. Process. 13, 1341–1359 (1999).
doi: 10.1002/(SICI)1099-1085(19990630)13:9<1341::AID-HYP810>3.0.CO;2-5
Cheng, G. & Jin, H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 21, 5–23 (2013).
doi: 10.1007/s10040-012-0927-2
Cochand, M., Molson, J. & Lemieux, J. M. Groundwater hydrogeochemistry in permafrost regions. Permafr. Periglac. Process. 30, 90–103 (2018).
doi: 10.1002/ppp.1998
Yamazaki, Y., Kubota, J., Ohata, T., Vunglinsky, V. & Mizuyama, T. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountanous region of eastern Siberia. Hydrol. Process. 20, 453–467 (2006).
doi: 10.1002/hyp.5914
Peterson, B. J. et al. Increasing river discharge to the Arctic. Ocean. Sci. (80-.). 298, 2171–2173 (2002).
doi: 10.1126/science.1077445
Déry, S. J., Stieglitz, M., McKenna, E. C. & Wood, E. F. Characteristics and trends of river discharge into Hudson, James, and Ingava Bays. J. Clim. 18, 2540–2557 (2005).
doi: 10.1175/JCLI3440.1
Lemieux, J. M. et al. Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol. J. 28, 833–851 (2020).
doi: 10.1007/s10040-020-02110-4
Cochand, M. et al. Rapido groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada). Hydrogeol. J. 28, 853–868 (2020).
doi: 10.1007/s10040-020-02109-x
Giesler, R. et al. Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeoscience 11, 525–537 (2014).
doi: 10.5194/bg-11-525-2014
Crill, P. M. et al. Methane flux from Minnesota peatlands. Global Biogeochem. Cycles 2, 371–384 (1988).
Dunfield, P., Knowles, R., Dumont, R. & Moore, T. R. Methane production and comsumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biochem. 25, 321–326 (1993).
doi: 10.1016/0038-0717(93)90130-4
Bastviken, D., Cole, J. J., Pace, M. L. & Van de Bogert, M. C. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH
Romanovsky, V. E., Smith, S. L. & Christiansen, H. H. Permafrost thermal state in the polar northern hemisphere during the international polar year 2007-2009: a synthesis. Permafr. Periglac. Process. 21, 106–116 (2010).
doi: 10.1002/ppp.689
Grosse, G. et al. Vulnerability and feedbacks of permafrost to climate change. Eos Trans. Am. Geophys. Union 92, 73–74 (2011).
doi: 10.1029/2011EO090001
Christensen, T. R. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004).
doi: 10.1029/2003GL018680
Duc, N. T., Crill, P. & Bastviken, D. Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100, 185–196 (2010).
doi: 10.1007/s10533-010-9415-8
Bintanja, R. et al. Strong future increases in Arctic precipitation variability linked to poleward moisture transport. Sci. Adv. 6, eaax6869 (2020).
pubmed: 32095521
pmcid: 7015687
doi: 10.1126/sciadv.aax6869
Young, N. L., Lemieux, J.-M., Delottier, H., Fortier, R. & Fortier, P. A conceptual model for anticipating the impact of landscape evolution on groundwater recharge in degrading permafrost environments. Geophys. Res. Lett. 47, e2020GL087695 (2020).
doi: 10.1029/2020GL087695
Brown, J., Ferrians, Jr., O. J., Heginbottom, J. A. & Melnikov, E. S. Circum-arctic of permafrost and ground ice conditions. https://doi.org/10.3133/cp45 (1997).
Johansson, M., Christensen, T. R., Akerman, H. J. & Callaghan, T. V. What determines the current presence or absense of permafrost in the Torneträsk region, a sub-arctic landscape in Northern Sweden? Ambio 35, 1–9 (2006).
doi: 10.1579/0044-7447(2006)35[190:WDTCPO]2.0.CO;2
Berggren, M. et al. Systematic microbial production of optically active dissolved organic matter in subarctic lake water. Limnol. Oceanogr. 65, 951–961 (2020).
doi: 10.1002/lno.11362
Virtanen, R. et al. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome. Ecol. Evol. 6, 143–158 (2016).
pubmed: 26811780
doi: 10.1002/ece3.1837
Wielgolaski, F. E (ed.). in Plant Ecology, Herbivory, and Human Impact in Nordic Mountain Birch Forests . 3–18 (Plant Ecology, Herbivory, and Human Impact in Nordic Mountain Birch Forests, 2005).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
doi: 10.1002/joc.1276
Kuhn, M., Lundin, E. J., Giesler, R., Johansson, M. & Karlsson, J. Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands. https://doi.org/10.1038/s41598-018-27770-x (2018).
Rocher-Ros, G. et al. Large lakes dominate CO
Burnett, W. C. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 367, 498–543 (2006).
pubmed: 16806406
doi: 10.1016/j.scitotenv.2006.05.009
Dimova, N. T., Burnett, W. C., Chanton, J. P. & Corbett, J. E. Application of radon-222 to investigate groundwater discharge into small shallow lakes. J. Hydrol. 486, 112–122 (2013).
doi: 10.1016/j.jhydrol.2013.01.043
Dimova, N. & Burnett, W. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnol. Oceanogr. 56, 486–494 (2011).
doi: 10.4319/lo.2011.56.2.0486
Rodellas, V. et al. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Sci. Total Environ. 642, 764–780 (2018).
pubmed: 29920463
doi: 10.1016/j.scitotenv.2018.06.095
Sadat-Noori, M. et al. Intermittently closed and open lakes and/or lagoons (ICOLLs) as groundwater-dominated coastal systems: evidence from seasonal radon observations. J. Hydrol. 535, 612–624 (2016).
doi: 10.1016/j.jhydrol.2016.01.080
Rodellas, V. et al. Conceptual uncertainties in groundwater and pore-water fluxes estimated by radon and radium mass balances. Limnol. Oceanogr. 1–19 https://doi.org/10.1002/lno.11678 (2021).
Schubert, M., Paschke, A., Lieberman, E. & Burnett, W. C. Air-water partitioning of 222Rn and its dependence on water temperature and salinity. Environ. Sci. Technol. 46, 3905–3911 (2012).
pubmed: 22385122
doi: 10.1021/es204680n
Moore, W. S. Sampling 226Ra in the deep ocean. Deep. Res. 23, 647–651 (1976).
Moore, W. S. & Reid, D. F. Extraction of radium from natural-waters using manganese-impregnated acrylic fibers. J. Geophys. Res. 36, 8880–8886 (1973).
doi: 10.1029/JC078i036p08880
Cable, J. E. & Martin, J. B. In situ evaluation of nearshore marine and fresh pore water transport into Flamengo Bay, Brazil. Estuar. Coast. Shelf Sci. 76, 473–483 (2008).
doi: 10.1016/j.ecss.2007.07.045
Moore, R. D. Slug injection using salt in solution. Watershed Magage Bull. 8, 1–6 (2005).
Corbett, D. R., Burnett, W. C., Cable, P. H. & Clark, S. B. A multiple approach to the determination of radon fluxes from sediments. J. Radioanal. Nucl. Chem. 236, 247–253 (1998).
doi: 10.1007/BF02386351
Chanyotha, S., Kranrod, C. & Burnett, W. C. Assessing diffusive fluxes and pore water radon activities via a single automated experiment. J. Radioanal. Nucl. Chem. 301, 581–588 (2014).
doi: 10.1007/s10967-014-3157-3
Reffmaster Software Ltd. West Sussex, PO20 7ES, United Kingdom. http://reffmaster.com.au/ (Reffmaster Software Ltd, 2017).
Lantmäteriet. GSD-Vegetationsdata (GSD vegetationdata, 2012).
Lindsay, J. B. Whitebox GAT: a case study in geomorphometric analysis. Comput. Geosci. 95, 75–84 (2016).
doi: 10.1016/j.cageo.2016.07.003
Lidberg, W., Nilsson, M., Lundmark, T. & Ågren, A. M. Evaluating preprocessing methods of digital elevation models for hydrological modelling. Hydrol. Process. 31, 4660–4668 (2017).
doi: 10.1002/hyp.11385
Ågren, A. M., Larson, J., Paul, S. S., Laudon, H. & Lidberg, W. Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape. Geoderma 404, 115280 (2021).
doi: 10.1016/j.geoderma.2021.115280
Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale. Earth-Sci. Rev. 193, 299–316 (2019).
doi: 10.1016/j.earscirev.2019.04.023
Klaus, M. & Vachon, D. Challenges of predicting transfer velocity from wind measurements over global lakes. Aquat. Sci. 82, 53 (2020).
doi: 10.1007/s00027-020-00729-9
Cole, J. J. & Caraco, N. F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 43, 647–656 (1998).
doi: 10.4319/lo.1998.43.4.0647
Vachon, D., Prairie, Y. T. & Smith, R. The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes. Can. J. Fish. Aquat. Sci. 70, 1757–1764 (2013).
doi: 10.1139/cjfas-2013-0241
Carrascal, L. M., Galvan, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
doi: 10.1111/j.1600-0706.2008.16881.x
Sobek, S., Algesten, G., Bergström, A. K., Jansson, M. & Tranvik, L. J. The catchment and climate regulation of pCO
doi: 10.1046/j.1365-2486.2003.00619.x
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).
Mevik, B. J. & Wehrens, R. The pls package: principal component and partial least squares regression. R. J. Stat. Softw. https://doi.org/10.18637/jss.v018.i02 1–24 (2007).
Wickham, H., Chang, W. & RStudio. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics (Version 2.2.1.) (2016).