Groundwater discharge as a driver of methane emissions from Arctic lakes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
27 06 2022
Historique:
received: 16 07 2021
accepted: 06 06 2022
entrez: 27 6 2022
pubmed: 28 6 2022
medline: 30 6 2022
Statut: epublish

Résumé

Lateral CH

Identifiants

pubmed: 35760781
doi: 10.1038/s41467-022-31219-1
pii: 10.1038/s41467-022-31219-1
pmc: PMC9237097
doi:

Substances chimiques

Methane OP0UW79H66

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3667

Informations de copyright

© 2022. The Author(s).

Références

Dlugokencky, E. J., Nisbet, E. G., Fisher, R. & Lowry, D. Global atmospheric methane: budget, changes and dangers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 2058–2072 (2011).
doi: 10.1098/rsta.2010.0341
IPCC. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergov. Panel Clim. Chang. Work. Gr. I Contrib. to IPCC Fifth Assess. Rep. (AR5) (Cambridge Univ Press, New York, 2013).
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
doi: 10.1038/ngeo2578
Tan, Z. & Zhuang, Q. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ. Res. Lett. 10, 054016 (2015).
Tan, Z. & Zhuang, Q. Methane emissions from pan-Arctic lakes during the 21st century: an analysis with process-based models of lake evolution and biogeochemistry. J. Geophys. Res. Biogeoscience 120, 2641–2653 (2015).
doi: 10.1002/2015JG003184
Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).
doi: 10.1029/2004GB002238
DelSontro, T., del Giorgio, P. A. & Prairie, Y. T. No longer a paradox: the interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes. Ecosystems 21, 1073–1087 (2018).
doi: 10.1007/s10021-017-0205-1
Bastviken, D. in Encyclopedia of Inland Waters. (ed. Likens, G. E.) 783–805 (Academic Press, 2009).
Martinez-Cruz, K., Sepulveda-Jauregui, A., Water Anthony, K. & Thalasso, F. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes. Biogeoscience 12, 4595–4606 (2015).
doi: 10.5194/bg-12-4595-2015
Thottathil, S. D., Reis, P. C. J., del Giorgio, P. A. & Prairie, Y. T. The extent and regulation of summer methane oxidation in northern lakes. J. Geophys. Res. Biogeosciences 123, 3216–3230 (2018).
doi: 10.1029/2018JG004464
Connolly, C. T., Bayani Cardenas, M., Burkart, G. A., Spencer, R. G. M. & McClelland, J. W. Groundwater as a major source of dissolved organic matter to Arctic coastal waters. Nat. Commun. 11, 1479 (2020).
pubmed: 32198391 pmcid: 7083844 doi: 10.1038/s41467-020-15250-8
Dabrowski, J. S. et al. Using radon to quantify groundwater discharge and methane fluxes to a shallow, tundra lake on the Yukon-Kuskokwim Delta, Alaska. Biogeochemistry 148, 69–89 (2020).
doi: 10.1007/s10533-020-00647-w
Paytan, A. et al. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study. Proc. Natl Acad. Sci. USA 112, 201417392 (2015).
doi: 10.1073/pnas.1417392112
Kling, G. W., Kipphut, G. W. & Miller, M. C. The flux of CO
doi: 10.1007/BF00013449
Striegl, R. & Michmerhuizen, C. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol. Oceanogr. 43, 1519–1529 (1998).
doi: 10.4319/lo.1998.43.7.1519
O’Connor, M. T., Bayani Cardenas, M., Neilson, B. T., Nicholaides, K. D. & Kling, G. W. Active layer groundwater flow: The interrelated effects of stratigraphy, thaw, and topography. Water Resour. Res. 55, 6555–6576 (2019).
doi: 10.1029/2018WR024636
Saarnio, S., Alm, J. & Silvola, J. Seasonal variation in CH
pubmed: 28307231 doi: 10.1007/s004420050176
Lupascu, M., Wadham, J. L., Hornibrook, E. R. C. & Pancost, R. D. Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: a comparison with non-permafrost Northern wetlands. Arct., Antarct. Alp. Res. 44, 469–482 (2012).
doi: 10.1657/1938-4246-44.4.469
Jansen, J. et al. Climate-sensitive controls on large spring emissions of CH
doi: 10.1029/2019JG005094
Kuhn, M. et al. BAWLD-CH
doi: 10.5194/essd-13-5151-2021
Hershey, A. E., Northington, R. M., Hart-Smith, J., Bostick, M. & Whalen, S. C. Methane efflux and oxidation, and use of methane-derived carbon by larval Chironomini, in arctic lake sediments. Limnol. Oceanogr. 60, 276–285 (2015).
doi: 10.1002/lno.10023
Bretz, K. A. & Whalen, S. C. Methane cycling dynamics in sediments of Alaskan Arctic Foothill lakes. Inl. Waters 4, 65–78 (2014).
doi: 10.5268/IW-4.1.637
Lofton, D. D., Whalen, S. C. & Hershey, A. E. Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes. Hydrobiologia 721, 209–222 (2014).
doi: 10.1007/s10750-013-1663-x
Gentzel, T., Hershey, A. E., Rublee, P. A. & Whalen, S. C. Net sediment production of methane, distribution of methanogens and methane-oxidizing bacteria, and utilization of methane-derived carbon in an arctic lake. Inl. Waters 2, 77–88 (2012).
doi: 10.5268/IW-2.2.416
Cunada, C. L., Lesack, F. W. & Tank, S. E. Methane emission dynamics among CO
doi: 10.1007/s10533-021-00853-0
Lecher, A. L. Groundwater discharge in the Arctic: a review of studies and implications for biogeochemistry. https://doi.org/10.3390/hydrology4030041 (2017).
Woo, M.-K. Permafrost Hydrology (Springer-Verlag, 2012).
Drexler, J. Z., Bedford, B. L., Scognamiglio, R. & Siegel, D. I. Fine-scale characteristics of groundwater flow in a peatland. Hydrol. Process. 13, 1341–1359 (1999).
doi: 10.1002/(SICI)1099-1085(19990630)13:9<1341::AID-HYP810>3.0.CO;2-5
Cheng, G. & Jin, H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 21, 5–23 (2013).
doi: 10.1007/s10040-012-0927-2
Cochand, M., Molson, J. & Lemieux, J. M. Groundwater hydrogeochemistry in permafrost regions. Permafr. Periglac. Process. 30, 90–103 (2018).
doi: 10.1002/ppp.1998
Yamazaki, Y., Kubota, J., Ohata, T., Vunglinsky, V. & Mizuyama, T. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountanous region of eastern Siberia. Hydrol. Process. 20, 453–467 (2006).
doi: 10.1002/hyp.5914
Peterson, B. J. et al. Increasing river discharge to the Arctic. Ocean. Sci. (80-.). 298, 2171–2173 (2002).
doi: 10.1126/science.1077445
Déry, S. J., Stieglitz, M., McKenna, E. C. & Wood, E. F. Characteristics and trends of river discharge into Hudson, James, and Ingava Bays. J. Clim. 18, 2540–2557 (2005).
doi: 10.1175/JCLI3440.1
Lemieux, J. M. et al. Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol. J. 28, 833–851 (2020).
doi: 10.1007/s10040-020-02110-4
Cochand, M. et al. Rapido groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada). Hydrogeol. J. 28, 853–868 (2020).
doi: 10.1007/s10040-020-02109-x
Giesler, R. et al. Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeoscience 11, 525–537 (2014).
doi: 10.5194/bg-11-525-2014
Crill, P. M. et al. Methane flux from Minnesota peatlands. Global Biogeochem. Cycles 2, 371–384 (1988).
Dunfield, P., Knowles, R., Dumont, R. & Moore, T. R. Methane production and comsumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biochem. 25, 321–326 (1993).
doi: 10.1016/0038-0717(93)90130-4
Bastviken, D., Cole, J. J., Pace, M. L. & Van de Bogert, M. C. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH
Romanovsky, V. E., Smith, S. L. & Christiansen, H. H. Permafrost thermal state in the polar northern hemisphere during the international polar year 2007-2009: a synthesis. Permafr. Periglac. Process. 21, 106–116 (2010).
doi: 10.1002/ppp.689
Grosse, G. et al. Vulnerability and feedbacks of permafrost to climate change. Eos Trans. Am. Geophys. Union 92, 73–74 (2011).
doi: 10.1029/2011EO090001
Christensen, T. R. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004).
doi: 10.1029/2003GL018680
Duc, N. T., Crill, P. & Bastviken, D. Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100, 185–196 (2010).
doi: 10.1007/s10533-010-9415-8
Bintanja, R. et al. Strong future increases in Arctic precipitation variability linked to poleward moisture transport. Sci. Adv. 6, eaax6869 (2020).
pubmed: 32095521 pmcid: 7015687 doi: 10.1126/sciadv.aax6869
Young, N. L., Lemieux, J.-M., Delottier, H., Fortier, R. & Fortier, P. A conceptual model for anticipating the impact of landscape evolution on groundwater recharge in degrading permafrost environments. Geophys. Res. Lett. 47, e2020GL087695 (2020).
doi: 10.1029/2020GL087695
Brown, J., Ferrians, Jr., O. J., Heginbottom, J. A. & Melnikov, E. S. Circum-arctic of permafrost and ground ice conditions. https://doi.org/10.3133/cp45 (1997).
Johansson, M., Christensen, T. R., Akerman, H. J. & Callaghan, T. V. What determines the current presence or absense of permafrost in the Torneträsk region, a sub-arctic landscape in Northern Sweden? Ambio 35, 1–9 (2006).
doi: 10.1579/0044-7447(2006)35[190:WDTCPO]2.0.CO;2
Berggren, M. et al. Systematic microbial production of optically active dissolved organic matter in subarctic lake water. Limnol. Oceanogr. 65, 951–961 (2020).
doi: 10.1002/lno.11362
Virtanen, R. et al. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome. Ecol. Evol. 6, 143–158 (2016).
pubmed: 26811780 doi: 10.1002/ece3.1837
Wielgolaski, F. E (ed.). in Plant Ecology, Herbivory, and Human Impact in Nordic Mountain Birch Forests . 3–18 (Plant Ecology, Herbivory, and Human Impact in Nordic Mountain Birch Forests, 2005).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
doi: 10.1002/joc.1276
Kuhn, M., Lundin, E. J., Giesler, R., Johansson, M. & Karlsson, J. Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands. https://doi.org/10.1038/s41598-018-27770-x (2018).
Rocher-Ros, G. et al. Large lakes dominate CO
Burnett, W. C. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 367, 498–543 (2006).
pubmed: 16806406 doi: 10.1016/j.scitotenv.2006.05.009
Dimova, N. T., Burnett, W. C., Chanton, J. P. & Corbett, J. E. Application of radon-222 to investigate groundwater discharge into small shallow lakes. J. Hydrol. 486, 112–122 (2013).
doi: 10.1016/j.jhydrol.2013.01.043
Dimova, N. & Burnett, W. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222. Limnol. Oceanogr. 56, 486–494 (2011).
doi: 10.4319/lo.2011.56.2.0486
Rodellas, V. et al. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Sci. Total Environ. 642, 764–780 (2018).
pubmed: 29920463 doi: 10.1016/j.scitotenv.2018.06.095
Sadat-Noori, M. et al. Intermittently closed and open lakes and/or lagoons (ICOLLs) as groundwater-dominated coastal systems: evidence from seasonal radon observations. J. Hydrol. 535, 612–624 (2016).
doi: 10.1016/j.jhydrol.2016.01.080
Rodellas, V. et al. Conceptual uncertainties in groundwater and pore-water fluxes estimated by radon and radium mass balances. Limnol. Oceanogr. 1–19 https://doi.org/10.1002/lno.11678 (2021).
Schubert, M., Paschke, A., Lieberman, E. & Burnett, W. C. Air-water partitioning of 222Rn and its dependence on water temperature and salinity. Environ. Sci. Technol. 46, 3905–3911 (2012).
pubmed: 22385122 doi: 10.1021/es204680n
Moore, W. S. Sampling 226Ra in the deep ocean. Deep. Res. 23, 647–651 (1976).
Moore, W. S. & Reid, D. F. Extraction of radium from natural-waters using manganese-impregnated acrylic fibers. J. Geophys. Res. 36, 8880–8886 (1973).
doi: 10.1029/JC078i036p08880
Cable, J. E. & Martin, J. B. In situ evaluation of nearshore marine and fresh pore water transport into Flamengo Bay, Brazil. Estuar. Coast. Shelf Sci. 76, 473–483 (2008).
doi: 10.1016/j.ecss.2007.07.045
Moore, R. D. Slug injection using salt in solution. Watershed Magage Bull. 8, 1–6 (2005).
Corbett, D. R., Burnett, W. C., Cable, P. H. & Clark, S. B. A multiple approach to the determination of radon fluxes from sediments. J. Radioanal. Nucl. Chem. 236, 247–253 (1998).
doi: 10.1007/BF02386351
Chanyotha, S., Kranrod, C. & Burnett, W. C. Assessing diffusive fluxes and pore water radon activities via a single automated experiment. J. Radioanal. Nucl. Chem. 301, 581–588 (2014).
doi: 10.1007/s10967-014-3157-3
Reffmaster Software Ltd. West Sussex, PO20 7ES, United Kingdom. http://reffmaster.com.au/ (Reffmaster Software Ltd, 2017).
Lantmäteriet. GSD-Vegetationsdata (GSD vegetationdata, 2012).
Lindsay, J. B. Whitebox GAT: a case study in geomorphometric analysis. Comput. Geosci. 95, 75–84 (2016).
doi: 10.1016/j.cageo.2016.07.003
Lidberg, W., Nilsson, M., Lundmark, T. & Ågren, A. M. Evaluating preprocessing methods of digital elevation models for hydrological modelling. Hydrol. Process. 31, 4660–4668 (2017).
doi: 10.1002/hyp.11385
Ågren, A. M., Larson, J., Paul, S. S., Laudon, H. & Lidberg, W. Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape. Geoderma 404, 115280 (2021).
doi: 10.1016/j.geoderma.2021.115280
Obu, J. et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale. Earth-Sci. Rev. 193, 299–316 (2019).
doi: 10.1016/j.earscirev.2019.04.023
Klaus, M. & Vachon, D. Challenges of predicting transfer velocity from wind measurements over global lakes. Aquat. Sci. 82, 53 (2020).
doi: 10.1007/s00027-020-00729-9
Cole, J. J. & Caraco, N. F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 43, 647–656 (1998).
doi: 10.4319/lo.1998.43.4.0647
Vachon, D., Prairie, Y. T. & Smith, R. The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes. Can. J. Fish. Aquat. Sci. 70, 1757–1764 (2013).
doi: 10.1139/cjfas-2013-0241
Carrascal, L. M., Galvan, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
doi: 10.1111/j.1600-0706.2008.16881.x
Sobek, S., Algesten, G., Bergström, A. K., Jansson, M. & Tranvik, L. J. The catchment and climate regulation of pCO
doi: 10.1046/j.1365-2486.2003.00619.x
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).
Mevik, B. J. & Wehrens, R. The pls package: principal component and partial least squares regression. R. J. Stat. Softw. https://doi.org/10.18637/jss.v018.i02 1–24 (2007).
Wickham, H., Chang, W. & RStudio. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics (Version 2.2.1.) (2016).

Auteurs

Carolina Olid (C)

Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, 90187, Umeå, Sweden. carolina.olid@ub.edu.
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden. carolina.olid@ub.edu.
UB-Geomodels Research Institute, Departament de Dinàmica de la Terra i l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, 08028, Barcelona, Spain. carolina.olid@ub.edu.

Valentí Rodellas (V)

Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

Gerard Rocher-Ros (G)

Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, 90187, Umeå, Sweden.
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.

Jordi Garcia-Orellana (J)

Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
Departament de Física, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

Marc Diego-Feliu (M)

Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
Departament de Física, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, 08034, Barcelona, Spain.
Associated Unit: Hydrogeology Group, UPC-CSIC, 08034, Barcelona, Spain.

Aaron Alorda-Kleinglass (A)

Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

David Bastviken (D)

Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden.

Jan Karlsson (J)

Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, 90187, Umeå, Sweden.

Articles similaires

Animals Cattle Alberta Deer Seasons
Lakes Salinity Archaea Bacteria Microbiota
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests
Zea mays Triticum China Seasons Crops, Agricultural

Classifications MeSH