Assessment of hepatic arterial hemodynamics with 4D flow MRI: in vitro analysis of motion and spatial resolution related error and in vivo feasibility study in 20 volunteers.


Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 25 01 2022
accepted: 17 05 2022
revised: 25 04 2022
pubmed: 23 6 2022
medline: 1 12 2022
entrez: 22 6 2022
Statut: ppublish

Résumé

To assess the ability of four-dimensional (4D) flow MRI to measure hepatic arterial hemodynamics by determining the effects of spatial resolution and respiratory motion suppression in vitro and its applicability in vivo with comparison to two-dimensional (2D) phase-contrast MRI. A dynamic hepatic artery phantom and 20 consecutive volunteers were scanned. The accuracies of Cartesian 4D flow sequences with k-space reordering and navigator gating at four spatial resolutions (0.5- to 1-mm isotropic) and navigator acceptance windows (± 8 to ± 2 mm) and one 2D phase-contrast sequence (0.5-mm in -plane) were assessed in vitro at 3 T. Two sequences centered on gastroduodenal and hepatic artery branches were assessed in vivo for intra - and interobserver agreement and compared to 2D phase-contrast. In vitro, higher spatial resolution led to a greater decrease in error than narrower navigator window (30.5 to -4.67% vs -6.64 to -4.67% for flow). In vivo, hepatic and gastroduodenal arteries were more often visualized with the higher resolution sequence (90 vs 71%). Despite similar interobserver agreement (κ = 0.660 and 0.704), the higher resolution sequence had lower variability for area (CV = 20.04 vs 30.67%), flow (CV = 34.92 vs 51.99%), and average velocity (CV = 26.47 vs 44.76%). 4D flow had lower differences between inflow and outflow at the hepatic artery bifurcation (11.03 ± 5.05% and 15.69 ± 6.14%) than 2D phase-contrast (28.77 ± 21.01%). High-resolution 4D flow can assess hepatic artery anatomy and hemodynamics with improved accuracy, greater vessel visibility, better interobserver reliability, and internal consistency. • Motion-suppressed Cartesian four-dimensional (4D) flow MRI with higher spatial resolution provides more accurate measurements even when accepted respiratory motion exceeds voxel size. • 4D flow MRI with higher spatial resolution provides substantial interobserver agreement for visualization of hepatic artery branches. • Lower peak and average velocities and a trend toward better internal consistency were observed with 4D flow MRI as compared to 2D phase-contrast.

Identifiants

pubmed: 35731288
doi: 10.1007/s00330-022-08890-5
pii: 10.1007/s00330-022-08890-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8639-8648

Subventions

Organisme : Canada First Research Excellence Fund
ID : TransMedTech 3-54-0000
Organisme : CIHR
ID : PJT-173319
Pays : Canada
Organisme : CIHR
ID : Canada Graduate Scholarship- Master's
Pays : Canada
Organisme : Fondation de l'Association des radiologistes du Québec
ID : 298509
Organisme : CIHR
ID : PJT-173319
Pays : Canada
Organisme : CIHR
ID : Canada Graduate Scholarship- Master's
Pays : Canada

Informations de copyright

© 2022. The Author(s), under exclusive licence to European Society of Radiology.

Références

Borhani AA, Elsayes KM, Catania R et al (2021) Imaging evaluation of living liver donor candidates: techniques, protocols, and anatomy. Radiographics 6:1572–1591
Ohta K, Shimohira M, Hashizume T et al (2019) Identification of the feeding arteries of hepatocellular carcinomas by performing dual arterial phase CT during pre-transarterial chemoembolization angiography. Abdom Radiol (NY) 6:2276–2282
Bogren HG, Buonocore MH (1999) 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging 5:861–869
doi: 10.1002/(SICI)1522-2586(199911)10:5<861::AID-JMRI35>3.0.CO;2-E
Carlisle KM, Halliwell M, Read AE, Wells PN (1992) Estimation of total hepatic blood flow by duplex ultrasound. Gut 1:92–97
doi: 10.1136/gut.33.1.92
Numata K, Tanaka K, Kiba T et al (1999) Hepatic arterial resistance after mixed-meal ingestion in healthy subjects and patients with chronic liver disease. J Clin Ultrasound 5:239–248
doi: 10.1002/(SICI)1097-0096(199906)27:5<239::AID-JCU3>3.0.CO;2-Z
Yzet T, Bouzerar R, Baledent O et al (2008) Dynamic measurements of total hepatic blood flow with phase contrast MRI. Eur J Rad 1:119–124
Jin N, Lewandowski RJ, Omary RA, Larson AC (2009) Respiratory self-gating for free-breathing abdominal phase-contrast blood flow measurements. J Magn Reson Imaging 4:860–868
doi: 10.1002/jmri.21711
Bane O, Peti S, Wagner M et al (2019) Hemodynamic measurements with an abdominal 4D flow MRI sequence with spiral sampling and compressed sensing in patients with chronic liver disease. J Magn Reson Imaging 4:994–1005
doi: 10.1002/jmri.26305
Brunsing RL, Brown D, Almahoud H et al (2021) Quantification of the hemodynamic changes of cirrhosis with free-breathing self-navigated MRI. J Magn Reson Imaging 5:1410–1421
doi: 10.1002/jmri.27488
Parekh K, Markl M, Rose M et al (2017) 4D flow MR imaging of the portal venous system: a feasibility study in children. Eur Radiol 2:832–840
doi: 10.1007/s00330-016-4396-1
Stankovic Z, Jung B, Collins J et al (2014) Reproducibility study of four-dimensional flow MRI of arterial and portal venous liver hemodynamics: influence of spatio-temporal resolution. Magn Reson Med 2:477–484
doi: 10.1002/mrm.24939
Dyvorne H, Knight-Greenfield A, Jajamovich G et al (2015) Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition. Radiology 1:245–254
doi: 10.1148/radiol.14140973
Dyverfeldt P, Ebbers T (2017) Comparison of respiratory motion suppression techniques for 4D flow MRI. Magn Reson Med 5:1877–1882
doi: 10.1002/mrm.26574
Bomberna T, Koudehi GA, Claerebout C et al (2021) Transarterial drug delivery for liver cancer: numerical simulations and experimental validation of particle distribution in patient-specific livers. Expert Opin Drug Deliv 3:409–422
doi: 10.1080/17425247.2021.1853702
Song R, Tipirneni A, Johnson P et al (2011) Evaluation of respiratory liver and kidney movements for MRI navigator gating. J Magn Reson Imaging 1:143–148
doi: 10.1002/jmri.22418
Korin HW, Ehman RL, Riederer SJ et al (1992) Respiratory kinematics of the upper abdominal organs: a quantitative study. Magn Reson Med 1:172–178
doi: 10.1002/mrm.1910230118
Zoli M (1999) Total and functional hepatic blood flow decrease in parallel with ageing. Age Ageing 1:29–33
doi: 10.1093/ageing/28.1.29
Yzet T, Bouzerar R, Allart J-D et al (2010) Hepatic vascular flow measurements by phase contrast MRI and doppler echography: a comparative and reproducibility study. J Magn Reson Imaging 3:579–588
doi: 10.1002/jmri.22079
McNaughton DA, Abu-Yousef MM (2011) Doppler US of the liver made simple. Radiographics 1:161–188
Ma LE, Markl M, Chow K et al (2019) Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k-space reordering, and inline reconstruction. Magn Reson Med 6:3675–3690
doi: 10.1002/mrm.27684
Markl M, Harloff A, Bley TA et al (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 4:824–831
doi: 10.1002/jmri.20871
Hess AT, Bissell MM, Ntusi NAB et al (2015) Aortic 4D flow: quantification of signal-to-noise ratio as a function of field strength and contrast enhancement for 1.5T, 3T, and 7T. Magn Reson Med 5:1864–1871
doi: 10.1002/mrm.25317
Heiberg E, Sjögren J, Ugander M et al (2010) Design and validation of Segment - freely available software for cardiovascular image analysis. BMC Med Imaging 1:1
doi: 10.1186/1471-2342-10-1
Martin Bland J, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8476:307–310
doi: 10.1016/S0140-6736(86)90837-8
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 1:159
doi: 10.2307/2529310
Tang C, Blatter DD, Parker DL (1993) Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging 2:377–385
doi: 10.1002/jmri.1880030213
Bailes DR, Gilderdale DJ, Bydder GM et al (1985) Respiratory ordered phase encoding (ROPE): a method for reducing respiratory motion artefacts in MR imaging. J Comput Assist Tomogr 4:835–838
doi: 10.1097/00004728-198507010-00039
Mano Y, Takehara Y, Sakaguchi T et al (2013) Hemodynamic assessment of celiaco-mesenteric anastomosis in patients with pancreaticoduodenal artery aneurysm concomitant with celiac artery occlusion using flow-sensitive four-dimensional magnetic resonance imaging. Eur J Vasc Endovasc Surg 3:321–328
doi: 10.1016/j.ejvs.2013.06.011
Haquin A, Sigovan M, Si-Mohamed S et al (2017) Phase-contrast MRI evaluation of haemodynamic changes induces by a coeliac axis stenosis in the gastroduodenal artery. Br J Radiol 1072:20160802
doi: 10.1259/bjr.20160802
Bannas P, Roldán-Alzate A, Johnson KM et al (2016) Longitudinal monitoring of hepatic blood flow before and after TIPS by using 4D-flow MR imaging. Radiology 2:574–582
doi: 10.1148/radiol.2016152247
Stankovic Z, Rössle M, Euringer W et al (2015) Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI. Eur Radiol 9:2634–2640
doi: 10.1007/s00330-015-3663-x
Roldán-Alzate A, Frydrychowicz A, Said A et al (2015) Impaired regulation of portal venous flow in response to a meal challenge as quantified by 4D flow MRI. J Magn Reson Imaging 4:1009–1017
doi: 10.1002/jmri.24886
Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 3:651–671
David A, Le Touze D, Warin-Fresse K et al (2019) In-vitro validation of 4D flow MRI measurements with an experimental pulsatile flow model. Diagn Interv Imaging 1:17–23
doi: 10.1016/j.diii.2018.08.012
Schnell S, Ansari SA, Wu C et al (2017) Accelerated dual-venc 4D flow MRI for neurovascular applications. J Magn Reson Imaging 1:102–114
doi: 10.1002/jmri.25595

Auteurs

Ivan P Dimov (IP)

Laboratory of Clinical Image Processing (LCTI), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis, Pavillon R, Montreal, QC, H2X 0A9, Canada.

Cyril Tous (C)

Laboratory of Clinical Image Processing (LCTI), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis, Pavillon R, Montreal, QC, H2X 0A9, Canada.

Ning Li (N)

Laboratory of Clinical Image Processing (LCTI), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis, Pavillon R, Montreal, QC, H2X 0A9, Canada.

Maxime Barat (M)

Laboratory of Clinical Image Processing (LCTI), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis, Pavillon R, Montreal, QC, H2X 0A9, Canada.
Department of Radiology and Nuclear Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.

Tim Bomberna (T)

IBiTech-Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.

Charlotte Debbaut (C)

IBiTech-Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.

Ning Jin (N)

Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Cleveland, OH, USA.

Gerald Moran (G)

Siemens Healthineers Canada, Oakville, ON, Canada.

An Tang (A)

Laboratory of Clinical Image Processing (LCTI), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis, Pavillon R, Montreal, QC, H2X 0A9, Canada.
Department of Radiology and Nuclear Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
Department of Radiology, Radiation Oncology and Nuclear Medicine, Faculty of Medecine, Université de Montréal, 2900 Bd Edouard-Montpetit , Montreal, QC, H3T 1J4, Canada.

Gilles Soulez (G)

Laboratory of Clinical Image Processing (LCTI), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis, Pavillon R, Montreal, QC, H2X 0A9, Canada. gilles.soulez.med@ssss.gouv.qc.ca.
Department of Radiology and Nuclear Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada. gilles.soulez.med@ssss.gouv.qc.ca.
Department of Radiology, Radiation Oncology and Nuclear Medicine, Faculty of Medecine, Université de Montréal, 2900 Bd Edouard-Montpetit , Montreal, QC, H3T 1J4, Canada. gilles.soulez.med@ssss.gouv.qc.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH