Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
received:
18
02
2022
accepted:
10
05
2022
pubmed:
18
6
2022
medline:
27
7
2022
entrez:
17
6
2022
Statut:
ppublish
Résumé
Most children with biallelic SMN1 deletions and three SMN2 copies develop spinal muscular atrophy (SMA) type 2. SPR1NT ( NCT03505099 ), a Phase III, multicenter, single-arm trial, investigated the efficacy and safety of onasemnogene abeparvovec for presymptomatic children with biallelic SMN1 mutations treated within six postnatal weeks. Of 15 children with three SMN2 copies treated before symptom onset, all stood independently before 24 months (P < 0.0001; 14 within normal developmental window), and 14 walked independently (P < 0.0001; 11 within normal developmental window). All survived without permanent ventilation at 14 months; ten (67%) maintained body weight (≥3rd WHO percentile) without feeding support through 24 months; and none required nutritional or respiratory support. No serious adverse events were considered treatment-related by the investigator. Onasemnogene abeparvovec was effective and well-tolerated for presymptomatic infants at risk of SMA type 2, underscoring the urgency of early identification and intervention.
Identifiants
pubmed: 35715567
doi: 10.1038/s41591-022-01867-3
pii: 10.1038/s41591-022-01867-3
pmc: PMC9205287
doi:
Substances chimiques
SMN2 protein, human
0
Survival of Motor Neuron 2 Protein
0
Zolgensma
0
Banques de données
ClinicalTrials.gov
['NCT03505099']
Types de publication
Clinical Trial, Phase III
Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1390-1397Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2022. The Author(s).
Références
Coovert, D. D. et al. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6, 1205–1214 (1997).
pubmed: 9259265
Mailman, M. D. et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet. Med. 4, 20–26 (2002).
pubmed: 11839954
Calucho, M. et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul. Disord. 28, 208–215 (2018).
pubmed: 29433793
Carson, V. J. et al. Nusinersen by subcutaneous intrathecal catheter for symptomatic spinal muscular atrophy patients with complex spine anatomy. Muscle Nerve 65, 51–59 (2022).
pubmed: 34606118
doi: 10.1002/mus.27425
Muntoni, F. et al. Long-term follow-up of patients with type 2 and non-ambulant type 3 spinal muscular atrophy (SMA) treated with olesoxime in the OLEOS trial. Neuromuscul. Disord. 30, 959–969 (2020).
pubmed: 33246887
doi: 10.1016/j.nmd.2020.10.008
D’Amico, A., Mercuri, E., Tiziano, F. D. & Bertini, E. Spinal muscular atrophy. Orphanet J. Rare Dis. 6, 71 (2011).
pubmed: 22047105
pmcid: 3231874
doi: 10.1186/1750-1172-6-71
Chabanon, A. et al. Prospective and longitudinal natural history study of patients with type 2 and 3 spinal muscular atrophy: baseline data NatHis-SMA study. PLoS ONE 13, e0201004 (2018).
pubmed: 30048507
pmcid: 6062049
doi: 10.1371/journal.pone.0201004
Kaufmann, P. et al. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology 79, 1889–1897 (2012).
pubmed: 23077013
pmcid: 3525313
doi: 10.1212/WNL.0b013e318271f7e4
Trucco, F. et al. Respiratory trajectories in type 2 and 3 spinal muscular atrophy in the iSMAC cohort study. Neurology 96, e587–e599 (2021).
pubmed: 33067401
pmcid: 7905794
doi: 10.1212/WNL.0000000000011051
Coratti, G. et al. Motor function in type 2 and 3 SMA patients treated with nusinersen: a critical review and meta-analysis. Orphanet J. Rare Dis. 16, 430 (2021).
pubmed: 34645478
pmcid: 8515709
doi: 10.1186/s13023-021-02065-z
Mercuri, E. et al. Patterns of disease progression in type 2 and 3 SMA: implications for clinical trials. Neuromuscul. Disord. 26, 126–131 (2016).
pubmed: 26776503
pmcid: 4762230
doi: 10.1016/j.nmd.2015.10.006
Annoussamy, M. et al. Natural history of type 2 and 3 spinal muscular atrophy: 2-year NatHis-SMA study. Ann. Clin. Transl. Neurol. 8, 359–373 (2021).
pubmed: 33369268
doi: 10.1002/acn3.51281
Farrar, M. A. et al. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J. Pediatr. 162, 155–159 (2013).
pubmed: 22809660
doi: 10.1016/j.jpeds.2012.05.067
Finkel, R. S. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 83, 810–817 (2014).
pubmed: 25080519
pmcid: 4155049
doi: 10.1212/WNL.0000000000000741
Swoboda, K. J. et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann. Neurol. 57, 704–712 (2005).
pubmed: 15852397
pmcid: 4334582
doi: 10.1002/ana.20473
Ramdas, S. & Servais, L. New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin. Pharmacother. 21, 307–315 (2020).
pubmed: 31973611
doi: 10.1080/14656566.2019.1704732
Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).
pubmed: 29091557
doi: 10.1056/NEJMoa1706198
Hale, K. et al. Landscape of spinal muscular atrophy newborn screening in the United States: 2018–2021. Int. J. Neonatal Screen. 7, 33 (2021).
pubmed: 34202531
pmcid: 8293186
doi: 10.3390/ijns7030033
Kariyawasam, D. S. T. et al. The implementation of newborn screening for spinal muscular atrophy: the Australian experience. Genet. Med. 22, 557–565 (2020).
pubmed: 31607747
doi: 10.1038/s41436-019-0673-0
Jedrzejowska, M. Advances in newborn screening and presymptomatic diagnosis of spinal muscular atrophy. Degener. Neurol. Neuromuscul. Dis. 10, 39–47 (2020).
pubmed: 33364872
pmcid: 7751307
Friese, J. et al. Safety monitoring of gene therapy for spinal muscular atrophy with onasemnogene abeparvovec—a single centre experience. J. Neuromuscul. Dis. 8, 209–216 (2021).
pubmed: 33427694
pmcid: 8075402
doi: 10.3233/JND-200593
Gaber Ali, H. et al. Gene therapy for spinal muscular atrophy: the Qatari experience. Gene Ther. 28, 676–680 (2021).
doi: 10.1038/s41434-021-00273-7
Waldrop, M. A. et al. Gene therapy for spinal muscular atrophy: safety and early outcomes. Pediatrics 146, e2022729 (2020).
doi: 10.1542/peds.2020-0729
Weiβ, C. et al. Gene replacement therapy with onasemnogene abeparvovec in children with spinal muscular atrophy aged 24 months or younger and bodyweight up to 15 kg: an observational cohort study. Lancet Child Adolesc. Health 6, P17–P27 (2022).
doi: 10.1016/S2352-4642(21)00287-X
Day, J. W. et al. Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy. Drug Saf. 44, 1109–1119 (2021).
pubmed: 34383289
pmcid: 8473343
doi: 10.1007/s40264-021-01107-6
D’Silva, A. M. et al. Onasemnogene abeparvovec in spinal muscular atrophy: an Australian experience of safety and efficacy. Ann. Clin. Transl. Neurol. 9, 339–350 (2022).
pubmed: 35170254
pmcid: 8935277
doi: 10.1002/acn3.51519
Servais, L. et al. Real-world treatment patterns and outcomes in patients with spinal muscular atrophy: updated findings from the RESTORE registry. Presented at: World Muscle Society 2021 Congress, 20–24 September 2021; Virtual.
Servais, L. et al. The RESTORE Registry: real-world assessments of interventions and long-term outcomes in patients with spinal muscular atrophy. Presented at: British Paediatric Neurology Association 2022 Annual Conference, 19–21 January 2022; Virtual.
Servais, L. et al. Effectiveness and safety of onasemnogene abeparvovec in older patients with spinal muscular atrophy (SMA): real-world outcomes from the RESTORE Registry. Presented at: British Paediatric Neurology Association 2022 Annual Conference, 19–21 January 2022; Virtual.
De Vivo, D. C. et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul. Disord. 29, 842–856 (2019).
pubmed: 31704158
pmcid: 7127286
doi: 10.1016/j.nmd.2019.09.007
WHO Multicentre Growth Reference Study Group. WHO Motor Development Study: windows of achievement for six gross motor development milestones. Acta Paediatr. Suppl. 450, 86–95 (2006).
Strauss, K. A. et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy: The Phase III SPR1NT trial. Nat. Med. https://doi.org/10.1038/s41591-022-01866-4 (2022).
Bayley, N. Bayley Scales of Infant and Toddler Development: Administration Manual 3rd edn (Pearson PsychCorp, 2006).
Mendell, J. R. et al. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29, 464–488 (2021).
pubmed: 33309881
doi: 10.1016/j.ymthe.2020.12.007
Mendell, J. R. et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 78, 834–841 (2021).
pubmed: 33999158
doi: 10.1001/jamaneurol.2021.1272
Day, J. W. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 284–293 (2021).
pubmed: 33743238
doi: 10.1016/S1474-4422(21)00001-6
Mercuri, E. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 832–841 (2021).
pubmed: 34536405
doi: 10.1016/S1474-4422(21)00251-9
Finkel, R. S. et al. RAINBOWFISH: a study of risdiplam in newborns with presymptomatic spinal muscular atrophy (SMA). Neurology 96, 4281 (2021).
Chand, D. et al. Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J. Pediatr. 231, 265–268 (2021).
pubmed: 33259859
doi: 10.1016/j.jpeds.2020.11.054
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
doi: 10.1038/35057062
Guttmacher, A. E., Jenkins, J. & Uhlmann, W. R. Genomic medicine: who will practice it? A call to open arms. Am. J. Med. Genet. 106, 216–222 (2001).
pubmed: 11778982
doi: 10.1002/ajmg.10008
Hall, W. D., Mathews, R. & Morley, K. I. Being more realistic about the public health impact of genomic medicine. PLoS Med. 7, e1000347 (2010).
pubmed: 20967240
pmcid: 2953533
doi: 10.1371/journal.pmed.1000347
Lander, E. S. Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011).
pubmed: 21307931
doi: 10.1038/nature09792
Green, E. D. & Guyer, M. S. National Human Genome Research Institute. Charting a course for genomic medicine from base pairs to bedside. Nature 470, 204–213 (2011).
pubmed: 21307933
doi: 10.1038/nature09764
Prior, T. W. et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am. J. Hum. Genet. 85, 408–413 (2009).
pubmed: 19716110
pmcid: 2771537
doi: 10.1016/j.ajhg.2009.08.002