Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the Phase III SPR1NT trial.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
07 2022
Historique:
received: 18 02 2022
accepted: 10 05 2022
pubmed: 18 6 2022
medline: 27 7 2022
entrez: 17 6 2022
Statut: ppublish

Résumé

Most children with biallelic SMN1 deletions and three SMN2 copies develop spinal muscular atrophy (SMA) type 2. SPR1NT ( NCT03505099 ), a Phase III, multicenter, single-arm trial, investigated the efficacy and safety of onasemnogene abeparvovec for presymptomatic children with biallelic SMN1 mutations treated within six postnatal weeks. Of 15 children with three SMN2 copies treated before symptom onset, all stood independently before 24 months (P < 0.0001; 14 within normal developmental window), and 14 walked independently (P < 0.0001; 11 within normal developmental window). All survived without permanent ventilation at 14 months; ten (67%) maintained body weight (≥3rd WHO percentile) without feeding support through 24 months; and none required nutritional or respiratory support. No serious adverse events were considered treatment-related by the investigator. Onasemnogene abeparvovec was effective and well-tolerated for presymptomatic infants at risk of SMA type 2, underscoring the urgency of early identification and intervention.

Identifiants

pubmed: 35715567
doi: 10.1038/s41591-022-01867-3
pii: 10.1038/s41591-022-01867-3
pmc: PMC9205287
doi:

Substances chimiques

SMN2 protein, human 0
Survival of Motor Neuron 2 Protein 0
Zolgensma 0

Banques de données

ClinicalTrials.gov
['NCT03505099']

Types de publication

Clinical Trial, Phase III Journal Article Multicenter Study Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1390-1397

Commentaires et corrections

Type : CommentIn
Type : CommentIn

Informations de copyright

© 2022. The Author(s).

Références

Coovert, D. D. et al. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6, 1205–1214 (1997).
pubmed: 9259265
Mailman, M. D. et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet. Med. 4, 20–26 (2002).
pubmed: 11839954
Calucho, M. et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul. Disord. 28, 208–215 (2018).
pubmed: 29433793
Carson, V. J. et al. Nusinersen by subcutaneous intrathecal catheter for symptomatic spinal muscular atrophy patients with complex spine anatomy. Muscle Nerve 65, 51–59 (2022).
pubmed: 34606118 doi: 10.1002/mus.27425
Muntoni, F. et al. Long-term follow-up of patients with type 2 and non-ambulant type 3 spinal muscular atrophy (SMA) treated with olesoxime in the OLEOS trial. Neuromuscul. Disord. 30, 959–969 (2020).
pubmed: 33246887 doi: 10.1016/j.nmd.2020.10.008
D’Amico, A., Mercuri, E., Tiziano, F. D. & Bertini, E. Spinal muscular atrophy. Orphanet J. Rare Dis. 6, 71 (2011).
pubmed: 22047105 pmcid: 3231874 doi: 10.1186/1750-1172-6-71
Chabanon, A. et al. Prospective and longitudinal natural history study of patients with type 2 and 3 spinal muscular atrophy: baseline data NatHis-SMA study. PLoS ONE 13, e0201004 (2018).
pubmed: 30048507 pmcid: 6062049 doi: 10.1371/journal.pone.0201004
Kaufmann, P. et al. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology 79, 1889–1897 (2012).
pubmed: 23077013 pmcid: 3525313 doi: 10.1212/WNL.0b013e318271f7e4
Trucco, F. et al. Respiratory trajectories in type 2 and 3 spinal muscular atrophy in the iSMAC cohort study. Neurology 96, e587–e599 (2021).
pubmed: 33067401 pmcid: 7905794 doi: 10.1212/WNL.0000000000011051
Coratti, G. et al. Motor function in type 2 and 3 SMA patients treated with nusinersen: a critical review and meta-analysis. Orphanet J. Rare Dis. 16, 430 (2021).
pubmed: 34645478 pmcid: 8515709 doi: 10.1186/s13023-021-02065-z
Mercuri, E. et al. Patterns of disease progression in type 2 and 3 SMA: implications for clinical trials. Neuromuscul. Disord. 26, 126–131 (2016).
pubmed: 26776503 pmcid: 4762230 doi: 10.1016/j.nmd.2015.10.006
Annoussamy, M. et al. Natural history of type 2 and 3 spinal muscular atrophy: 2-year NatHis-SMA study. Ann. Clin. Transl. Neurol. 8, 359–373 (2021).
pubmed: 33369268 doi: 10.1002/acn3.51281
Farrar, M. A. et al. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J. Pediatr. 162, 155–159 (2013).
pubmed: 22809660 doi: 10.1016/j.jpeds.2012.05.067
Finkel, R. S. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 83, 810–817 (2014).
pubmed: 25080519 pmcid: 4155049 doi: 10.1212/WNL.0000000000000741
Swoboda, K. J. et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann. Neurol. 57, 704–712 (2005).
pubmed: 15852397 pmcid: 4334582 doi: 10.1002/ana.20473
Ramdas, S. & Servais, L. New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin. Pharmacother. 21, 307–315 (2020).
pubmed: 31973611 doi: 10.1080/14656566.2019.1704732
Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).
pubmed: 29091557 doi: 10.1056/NEJMoa1706198
Hale, K. et al. Landscape of spinal muscular atrophy newborn screening in the United States: 2018–2021. Int. J. Neonatal Screen. 7, 33 (2021).
pubmed: 34202531 pmcid: 8293186 doi: 10.3390/ijns7030033
Kariyawasam, D. S. T. et al. The implementation of newborn screening for spinal muscular atrophy: the Australian experience. Genet. Med. 22, 557–565 (2020).
pubmed: 31607747 doi: 10.1038/s41436-019-0673-0
Jedrzejowska, M. Advances in newborn screening and presymptomatic diagnosis of spinal muscular atrophy. Degener. Neurol. Neuromuscul. Dis. 10, 39–47 (2020).
pubmed: 33364872 pmcid: 7751307
Friese, J. et al. Safety monitoring of gene therapy for spinal muscular atrophy with onasemnogene abeparvovec—a single centre experience. J. Neuromuscul. Dis. 8, 209–216 (2021).
pubmed: 33427694 pmcid: 8075402 doi: 10.3233/JND-200593
Gaber Ali, H. et al. Gene therapy for spinal muscular atrophy: the Qatari experience. Gene Ther. 28, 676–680 (2021).
doi: 10.1038/s41434-021-00273-7
Waldrop, M. A. et al. Gene therapy for spinal muscular atrophy: safety and early outcomes. Pediatrics 146, e2022729 (2020).
doi: 10.1542/peds.2020-0729
Weiβ, C. et al. Gene replacement therapy with onasemnogene abeparvovec in children with spinal muscular atrophy aged 24 months or younger and bodyweight up to 15 kg: an observational cohort study. Lancet Child Adolesc. Health 6, P17–P27 (2022).
doi: 10.1016/S2352-4642(21)00287-X
Day, J. W. et al. Clinical trial and postmarketing safety of onasemnogene abeparvovec therapy. Drug Saf. 44, 1109–1119 (2021).
pubmed: 34383289 pmcid: 8473343 doi: 10.1007/s40264-021-01107-6
D’Silva, A. M. et al. Onasemnogene abeparvovec in spinal muscular atrophy: an Australian experience of safety and efficacy. Ann. Clin. Transl. Neurol. 9, 339–350 (2022).
pubmed: 35170254 pmcid: 8935277 doi: 10.1002/acn3.51519
Servais, L. et al. Real-world treatment patterns and outcomes in patients with spinal muscular atrophy: updated findings from the RESTORE registry. Presented at: World Muscle Society 2021 Congress, 20–24 September 2021; Virtual.
Servais, L. et al. The RESTORE Registry: real-world assessments of interventions and long-term outcomes in patients with spinal muscular atrophy. Presented at: British Paediatric Neurology Association 2022 Annual Conference, 19–21 January 2022; Virtual.
Servais, L. et al. Effectiveness and safety of onasemnogene abeparvovec in older patients with spinal muscular atrophy (SMA): real-world outcomes from the RESTORE Registry. Presented at: British Paediatric Neurology Association 2022 Annual Conference, 19–21 January 2022; Virtual.
De Vivo, D. C. et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul. Disord. 29, 842–856 (2019).
pubmed: 31704158 pmcid: 7127286 doi: 10.1016/j.nmd.2019.09.007
WHO Multicentre Growth Reference Study Group. WHO Motor Development Study: windows of achievement for six gross motor development milestones. Acta Paediatr. Suppl. 450, 86–95 (2006).
Strauss, K. A. et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy: The Phase III SPR1NT trial. Nat. Med. https://doi.org/10.1038/s41591-022-01866-4 (2022).
Bayley, N. Bayley Scales of Infant and Toddler Development: Administration Manual 3rd edn (Pearson PsychCorp, 2006).
Mendell, J. R. et al. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29, 464–488 (2021).
pubmed: 33309881 doi: 10.1016/j.ymthe.2020.12.007
Mendell, J. R. et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 78, 834–841 (2021).
pubmed: 33999158 doi: 10.1001/jamaneurol.2021.1272
Day, J. W. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 284–293 (2021).
pubmed: 33743238 doi: 10.1016/S1474-4422(21)00001-6
Mercuri, E. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 832–841 (2021).
pubmed: 34536405 doi: 10.1016/S1474-4422(21)00251-9
Finkel, R. S. et al. RAINBOWFISH: a study of risdiplam in newborns with presymptomatic spinal muscular atrophy (SMA). Neurology 96, 4281 (2021).
Chand, D. et al. Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J. Pediatr. 231, 265–268 (2021).
pubmed: 33259859 doi: 10.1016/j.jpeds.2020.11.054
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
doi: 10.1038/35057062
Guttmacher, A. E., Jenkins, J. & Uhlmann, W. R. Genomic medicine: who will practice it? A call to open arms. Am. J. Med. Genet. 106, 216–222 (2001).
pubmed: 11778982 doi: 10.1002/ajmg.10008
Hall, W. D., Mathews, R. & Morley, K. I. Being more realistic about the public health impact of genomic medicine. PLoS Med. 7, e1000347 (2010).
pubmed: 20967240 pmcid: 2953533 doi: 10.1371/journal.pmed.1000347
Lander, E. S. Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011).
pubmed: 21307931 doi: 10.1038/nature09792
Green, E. D. & Guyer, M. S. National Human Genome Research Institute. Charting a course for genomic medicine from base pairs to bedside. Nature 470, 204–213 (2011).
pubmed: 21307933 doi: 10.1038/nature09764
Prior, T. W. et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am. J. Hum. Genet. 85, 408–413 (2009).
pubmed: 19716110 pmcid: 2771537 doi: 10.1016/j.ajhg.2009.08.002

Auteurs

Kevin A Strauss (KA)

Clinic for Special Children, Strasburg, PA, USA. kstrauss@clinicforspecialchildren.org.
Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA. kstrauss@clinicforspecialchildren.org.
Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA. kstrauss@clinicforspecialchildren.org.

Michelle A Farrar (MA)

Department of Neurology, Sydney Children's Hospital Network, Sydney, NSW, Australia.
School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.

Francesco Muntoni (F)

The Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK.
National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London, UK.

Kayoko Saito (K)

Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.

Jerry R Mendell (JR)

Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA.
Department of Pediatrics and Department of Neurology, The Ohio State University, Columbus, OH, USA.

Laurent Servais (L)

Department of Paediatrics, MDUK Oxford Neuromuscular Centre, Oxford, UK.
Neuromuscular Reference Center, Department of Pediatrics, CHU & University of Liège, Liège, Belgium.

Hugh J McMillan (HJ)

Department of Pediatrics, Neurology & Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.

Richard S Finkel (RS)

Department of Pediatrics, Nemours Children's Hospital, Orlando, FL, USA.
Center for Experimental Neurotherapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.

Kathryn J Swoboda (KJ)

Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.

Jennifer M Kwon (JM)

Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

Craig M Zaidman (CM)

Washington University School of Medicine, St. Louis, MO, USA.

Claudia A Chiriboga (CA)

Division of Pediatric Neurology, Columbia University Medical Center, New York, NY, USA.

Susan T Iannaccone (ST)

Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Jena M Krueger (JM)

Department of Neurology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA.

Julie A Parsons (JA)

Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.

Perry B Shieh (PB)

Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Sarah Kavanagh (S)

Novartis Gene Therapies, Inc., Bannockburn, IL, USA.

Melissa Wigderson (M)

Novartis Gene Therapies, Inc., Bannockburn, IL, USA.

Sitra Tauscher-Wisniewski (S)

Novartis Gene Therapies, Inc., Bannockburn, IL, USA.

Bryan E McGill (BE)

Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, MA, USA.

Thomas A Macek (TA)

Novartis Gene Therapies, Inc., Bannockburn, IL, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH