Geometry of a DNA Nanostructure Influences Its Endocytosis: Cellular Study on 2D, 3D, and
3D spheroid
DNA nanostructure
endocytosis
geometry
in vivo
tetrahedron
Journal
ACS nano
ISSN: 1936-086X
Titre abrégé: ACS Nano
Pays: United States
ID NLM: 101313589
Informations de publication
Date de publication:
26 07 2022
26 07 2022
Historique:
pubmed:
18
6
2022
medline:
15
11
2022
entrez:
17
6
2022
Statut:
ppublish
Résumé
Fabrication of nanoscale DNA devices to generate 3D nano-objects with precise control of shape, size, and presentation of ligands has shown tremendous potential for therapeutic applications. The interactions between the cell membrane and different topologies of 3D DNA nanostructures are crucial for designing efficient tools for interfacing DNA devices with biological systems. The practical applications of these DNA nanocages are still limited in cellular and biological systems owing to the limited understanding of their interaction with the cell membrane and endocytic pathway. The correlation between the geometry of DNA nanostructures and their internalization efficiency remains elusive. We investigated the influence of the shape and size of 3D DNA nanostructures on their cellular internalization efficiency. We found that one particular geometry, i.e., the tetrahedral shape, is more favored over other designed geometries for their cellular uptake in 2D and 3D cell models. This is also replicable for cellular processes like cell invasion assays in a 3D spheroid model, and passing the epithelial barriers in in vivo zebrafish model systems. Our work provides detailed information for the rational design of DNA nanodevices for their upcoming biological and biomedical applications.
Identifiants
pubmed: 35715010
doi: 10.1021/acsnano.2c01382
doi:
Substances chimiques
DNA
9007-49-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM