Peak broadening caused by using different micro-liquid chromatography detectors.

Apparent efficiency Extra-post-column band broadening Micro bore column Miniaturization

Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 06 05 2022
accepted: 07 06 2022
revised: 01 06 2022
pubmed: 16 6 2022
medline: 28 7 2022
entrez: 15 6 2022
Statut: ppublish

Résumé

Advancements in column technology resulted in smaller particles and more efficient phases. In parallel, the use of columns with reduced dimensions is becoming more common. This means the effective column volume is also decreased, thereby making the systems more susceptible to effects of band broadening due to extra-column volume. Despite these trends and the fact that a growing number of miniaturized liquid chromatography systems are being offered commercially, manufacturers often stick to the modular concept with dedicated units for pumps, column oven, and detectors. This modular design results in long connection capillaries, which leads to extra-column band broadening and consequently prevents the exploitation of the intrinsic efficiency of state-of-the-art columns. In particular, band broadening post column has a considerable negative effect on efficiency. In this study, mass flow and concentration-dependent detectors were examined for their influence on band broadening using a micro-LC system. A mass spectrometric detector, an evaporative light scattering detector, two UV detectors, and a previously undescribed fluorescence detector were compared. The influence on efficiency is compared using plate height vs linear velocity data and peak variance. It is shown that an increase in the inner diameter after the post-column transfer capillary leads to significant loss in plate height. Comparing the UV detectors, it could be shown that the dispersion was reduced by 38% by the reduction of the post-column volume. The largest variance was found for the evaporative light scattering detector, which was 368% higher compared to the variance of the detector with the least effect on band broadening.

Identifiants

pubmed: 35705858
doi: 10.1007/s00216-022-04170-9
pii: 10.1007/s00216-022-04170-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6107-6114

Subventions

Organisme : German Federal Ministry of Economic Affairs and Climate Action
ID : IGF - Project No. 19144 N
Organisme : German Federal Ministry of Economic Affairs and Climate Action
ID : IGF - Project No. 20666 N

Informations de copyright

© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Vargas Medina DA, Maciel EVS, de Toffoli AL, Lanças FM. Miniaturization of liquid chromatography coupled to mass spectrometry.: 2. Achievements on modern instrumentation for miniaturized liquid chromatography coupled to mass spectrometry. TrAC - Trends Anal Chem. 2020;128:115910. https://doi.org/10.1016/j.trac.2020.115910 .
doi: 10.1016/j.trac.2020.115910
Mejía-Carmona K, da Silva Soares, Burato J, Borsatto JVB, de Toffoli AL, Lanças FM. Miniaturization of liquid chromatography coupled to mass spectrometry: 1. Current trends on miniaturized LC columns. TrAC - Trends Anal Chem. 2020;122:115735. https://doi.org/10.1016/j.trac.2019.115735 .
doi: 10.1016/j.trac.2019.115735
Agrawal A, Keçili R, Ghorbani-Bidkorbeh F, Hussain CM. Green miniaturized technologies in analytical and bioanalytical chemistry. TrAC Trends Anal Chem. 2021;143: 116383. https://doi.org/10.1016/j.trac.2021.116383 .
doi: 10.1016/j.trac.2021.116383
Napolitano-Tabares PI, Negrín-Santamaría I, Gutiérrez-Serpa A, Pino V. Recent efforts to increase greenness in chromatography. Curr Opin Green Sustain Chem. 2021;32: 100536. https://doi.org/10.1016/j.cogsc.2021.100536 .
doi: 10.1016/j.cogsc.2021.100536
Bian Y, Zheng R, Bayer FP, Wong C, Chang YC, Meng C, Zolg DP, Reinecke M, Zecha J, Wiechmann S, Heinzlmeir S, Scherr J, Hemmer B, Baynham M, Gingras AC, Boychenko O, Kuster B. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nat Commun. 2020;11:1–12. https://doi.org/10.1038/s41467-019-13973-x .
doi: 10.1038/s41467-019-13973-x
Vehus T, Roberg-Larsen H, Waaler J, Aslaksen S, Krauss S, Wilson SR, Lundanes E. Versatile, sensitive liquid chromatography mass spectrometry-Implementation of 10 μm OT columns suitable for small molecules, peptides and proteins. Sci Rep. 2016;6:1–10. https://doi.org/10.1038/srep37507 .
doi: 10.1038/srep37507
Hetzel T, vom Eyser C, Tuerk J, Teutenberg T, Schmidt TC. Micro-liquid chromatography mass spectrometry for the analysis of antineoplastic drugs from wipe samples. Anal Bioanal Chem. 2016;408:8221–9. https://doi.org/10.1007/s00216-016-9932-y .
doi: 10.1007/s00216-016-9932-y pubmed: 27655336
Vanderlinden K, Broeckhoven K, Vanderheyden Y, Desmet G. Effect of pre- and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions. J Chromatogr A. 2016;1442:73–82. https://doi.org/10.1016/j.chroma.2016.03.016 .
doi: 10.1016/j.chroma.2016.03.016 pubmed: 26987413
Broeckhoven K, Desmet G. The future of UHPLC: towards higher pressure and/or smaller particles? TrAC Trends Anal Chem. 2014;63:65–75. https://doi.org/10.1016/j.trac.2014.06.022 .
doi: 10.1016/j.trac.2014.06.022
Rahimi F, Chatzimichail S, Saifuddin A, Surman AJ, Taylor-Robinson SD, Salehi-Reyhani A. A review of portable high-performance liquid chromatography: the future of the field? Berlin Heidelberg: Springer; 2020.
Lam SC, Coates LJ, Hemida M, Gupta V, Haddad PR, Macka M, Paull B. Miniature and fully portable gradient capillary liquid chromatograph. Anal Chim Acta. 2020;1101:199–210. https://doi.org/10.1016/j.aca.2019.12.014 .
doi: 10.1016/j.aca.2019.12.014 pubmed: 32029112
Sharma S, Plistil A, Barnett HE, Tolley HD, Farnsworth PB, Stearns SD, Lee ML. Hand-portable gradient capillary liquid chromatography pumping system. Anal Chem. 2015;87:10457–61. https://doi.org/10.1021/acs.analchem.5b02583 .
doi: 10.1021/acs.analchem.5b02583 pubmed: 26378495
Lankelma J, van Iperen DJ, van der Sluis PJ. Towards using high-performance liquid chromatography at home. J Chromatogr A. 2021;1639: 461925. https://doi.org/10.1016/j.chroma.2021.461925 .
doi: 10.1016/j.chroma.2021.461925 pubmed: 33556779
Su C-K. Review of 3D-Printed functionalized devices for chemical and biochemical analysis. Anal Chim Acta. 2021;1158: 338348. https://doi.org/10.1016/j.aca.2021.338348 .
doi: 10.1016/j.aca.2021.338348 pubmed: 33863415
Balakrishnan HK, Doeven EH, Merenda A, Dumée LF, Guijt RM. 3D printing for the integration of porous materials into miniaturised fluidic devices: a review. Anal Chim Acta. 2021;338796. https://doi.org/10.1016/j.aca.2021.338796.
Desmet G, Broeckhoven K. Extra-column band broadening effects in contemporary liquid chromatography: causes and solutions. TrAC - Trends Anal Chem. 2019;119: 115619. https://doi.org/10.1016/j.trac.2019.115619 .
doi: 10.1016/j.trac.2019.115619
Hetzel T, Loeker D, Teutenberg T, Schmidt TC. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis. J Sep Sci. 2016;39:3889–97. https://doi.org/10.1002/jssc.201600775 .
doi: 10.1002/jssc.201600775 pubmed: 27553706
Chester TL. Recent developments in high-performance liquid chromatography stationary phases. Anal Chem. 2013;85:579–89. https://doi.org/10.1021/ac303180y .
doi: 10.1021/ac303180y pubmed: 23121288
Werres T, Schmidt TC, Teutenberg T. The influence of injection volume on efficiency of microbore liquid chromatography columns for gradient and isocratic elution. J Chromatogr A. 2021;1641. https://doi.org/10.1016/j.chroma.2021.461965.
Taylor G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc London Ser A Math Phys Sci. 1953;219:186–203.  https://doi.org/10.1098/rspa.1953.0139 .
Aris R. On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc London Ser A Math Phys Sci. 1956;235:67–77. https://doi.org/10.1098/rspa.1956.0065 .
He B, Tait N, Regnier F. Fabrication of nanocolumns for liquid chromatography. Anal Chem. 1998;70:3790–7. https://doi.org/10.1021/ac980028h .
doi: 10.1021/ac980028h pubmed: 9751022
Filip B, Bochenek R, Baran K, Strzałka D, Antos D. Influence of the geometry of extra column volumes on band broadening in a chromatographic system. Predictions by computational fluid dynamics. J Chromatogr A. 2021;1653:462410. https://doi.org/10.1016/j.chroma.2021.462410 .
doi: 10.1016/j.chroma.2021.462410 pubmed: 34332316
Gunnarson C, Lauer T, Willenbring H, Larson E, Dittmann M, Broeckhoven K, Stoll DR. Implications of dispersion in connecting capillaries for separation systems involving post-column flow splitting. J Chromatogr A. 2021;1639: 461893. https://doi.org/10.1016/j.chroma.2021.461893 .
doi: 10.1016/j.chroma.2021.461893 pubmed: 33524933
Desmet G, Cabooter D, Broeckhoven K. Graphical data representation methods to assess the quality of LC columns. Anal Chem. 2015;87:8593–602. https://doi.org/10.1021/ac504473p .
doi: 10.1021/ac504473p pubmed: 25909827
Spaggiari D, Fekete S, Eugster PJ, Veuthey JL, Geiser L, Rudaz S, Guillarme D. Contribution of various types of liquid chromatography-mass spectrometry instruments to band broadening in fast analysis. J Chromatogr A. 2013;1310:45–55. https://doi.org/10.1016/j.chroma.2013.08.001 .
doi: 10.1016/j.chroma.2013.08.001 pubmed: 23993747

Auteurs

Tobias Werres (T)

Institut für Energie- und Umwelttechnik e. V., IUTA (Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany.
Instrumental Analytical Chemistry, University Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.

Torsten C Schmidt (TC)

Instrumental Analytical Chemistry, University Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.

Thorsten Teutenberg (T)

Institut für Energie- und Umwelttechnik e. V., IUTA (Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany. teutenberg@iuta.de.

Articles similaires

Humans Chromatography, High Pressure Liquid Acetaminophen COVID-19 SARS-CoV-2
Humans Pisum sativum Breast Neoplasms Tandem Mass Spectrometry Plant Extracts
Humans Breast Neoplasms Female Mass Spectrometry Adipose Tissue
Humans Proteomics Paraffin Embedding Tissue Fixation Organelles

Classifications MeSH