Antarctic Hairgrass Rhizosphere Microbiomes: Microscale Effects Shape Diversity, Structure, and Function.
Antarctic vascular plants
microbial diversity
microbial functional repertoire
rhizosphere microbiome
Journal
Microbes and environments
ISSN: 1347-4405
Titre abrégé: Microbes Environ
Pays: Japan
ID NLM: 9710937
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
15
6
2022
pubmed:
16
6
2022
medline:
18
6
2022
Statut:
ppublish
Résumé
The rhizosphere microbiome of the native Antarctic hairgrass Deschampsia antarctica from the central maritime Antarctic was investigated using 16S RNA metagenomics and compared to those of the second native Antarctic plant Colobanthus quitensis and closely related temperate D. cespitosa. The rhizosphere microbial communities of D. antarctica and D. cespitosa had high taxon richness, while that of C. quitensis had markedly lower diversity. The majority of bacteria in the rhizosphere communities of the hairgrass were affiliated to Proteobacteria, Bacteroidetes, and Actinobacteria. The rhizosphere of C. quitensis was dominated by Actinobacteria. All microbial communities included high proportions of unique amplicon sequence variants (ASVs) and there was high heterogeneity between samples at the ASV level. The soil parameters examined did not explain this heterogeneity. Bacteria belonging to Actinobacteria, Bacteroidetes, and Proteobacteria were sensitive to fluctuations in the soil surface temperature. The values of the United Soil Surface Temperature Influence Index (UTII, I
Identifiants
pubmed: 35705309
doi: 10.1264/jsme2.ME21069
pmc: PMC9530728
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Soil
0
Lignin
9005-53-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Antonie Van Leeuwenhoek. 2012 May;101(4):725-31
pubmed: 22205375
Int J Syst Evol Microbiol. 2012 Dec;62(Pt 12):3030-3035
pubmed: 22307507
Microb Ecol. 1997 Mar;33(2):106-23
pubmed: 9052645
Biosci Biotechnol Biochem. 2007 Oct;71(10):2487-92
pubmed: 17928721
FEMS Microbiol Ecol. 2012 Nov;82(2):326-40
pubmed: 22428950
Tsitol Genet. 2015 Mar-Apr;49(2):72-9
pubmed: 26030977
J Exp Bot. 2001 Mar;52(Spec Issue):487-511
pubmed: 11326055
Sci Rep. 2019 Feb 25;9(1):2686
pubmed: 30804443
Scientifica (Cairo). 2012;2012:963401
pubmed: 24278762
Nature. 2002 Mar 7;416(6876):82-3
pubmed: 11882896
Biotechnol Adv. 1999 Oct;17(4-5):319-39
pubmed: 14538133
Cold Spring Harb Perspect Biol. 2011 Apr 01;3(4):
pubmed: 21084388
Annu Rev Plant Biol. 2013;64:807-38
pubmed: 23373698
Microbiol Rev. 1993 Sep;57(3):605-22
pubmed: 8246842
Ecology. 2007 Jun;88(6):1354-64
pubmed: 17601128
Nucleic Acids Res. 2013 Jan 7;41(1):e1
pubmed: 22933715
J Bacteriol. 2000 Dec;182(24):6950-7
pubmed: 11092855
FEMS Microbiol Ecol. 2011 Jun;76(3):476-91
pubmed: 21314705
Front Microbiol. 2015 Oct 28;6:1188
pubmed: 26579095
ISME J. 2010 Aug;4(8):989-1001
pubmed: 20357834
Appl Environ Microbiol. 2014 Jun;80(12):3749-56
pubmed: 24727271
Extremophiles. 2016 Nov;20(6):875-884
pubmed: 27709303
Annu Rev Microbiol. 2009;63:541-56
pubmed: 19575558
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19964-9
pubmed: 19850879
Naturwissenschaften. 2004 Nov;91(11):552-5
pubmed: 15502903
Stand Genomic Sci. 2010 Feb 28;2(1):87-95
pubmed: 21304681
Springerplus. 2013 Nov 13;2:606
pubmed: 24349944
Science. 2018 Jan 19;359(6373):320-325
pubmed: 29348236
Microbes Environ. 2021;36(1):
pubmed: 33563868
Physiol Plant. 2002 Aug;115(4):479-486
pubmed: 12121453
Environ Microbiol. 2007 Nov;9(11):2670-82
pubmed: 17922752
Appl Environ Microbiol. 2012 Jan;78(2):586-8
pubmed: 22057861
Tsitol Genet. 2011 May-Jun;45(3):43-50
pubmed: 21774402
PLoS One. 2014 Mar 19;9(3):e92294
pubmed: 24647674
BMC Ecol. 2007 Dec 19;7:15
pubmed: 18093288
FEMS Microbiol Ecol. 2009 Apr;68(1):1-13
pubmed: 19243436
Appl Environ Microbiol. 2009 Apr;75(7):2046-56
pubmed: 19201974
Nat Commun. 2020 May 20;11(1):2527
pubmed: 32433543
ISME J. 2012 Mar;6(3):692-702
pubmed: 21938020
Nat Biotechnol. 2019 Aug;37(8):852-857
pubmed: 31341288
Nat Commun. 2018 Jul 16;9(1):2738
pubmed: 30013066