Toward a cochlear implant electrode array with shape memory effect for post-insertion perimodiolar positioning.

austenite finish temperature modiolus hugging electrode nickel titanium alloy nitinol shape memory alloy smart material transformation temperature range

Journal

Journal of biomedical materials research. Part B, Applied biomaterials
ISSN: 1552-4981
Titre abrégé: J Biomed Mater Res B Appl Biomater
Pays: United States
ID NLM: 101234238

Informations de publication

Date de publication:
11 2022
Historique:
revised: 16 05 2022
received: 07 12 2021
accepted: 20 05 2022
pubmed: 10 6 2022
medline: 20 9 2022
entrez: 9 6 2022
Statut: ppublish

Résumé

For cochlear implants (CI) a final position of the electrode array (EA) along the inner wall of the spirally shaped cochlea is considered to be beneficial because it results in a closer proximity to the auditory nerve fibers. A shape memory effect (SME) could facilitate such shift of the EA toward the cochlear inner wall, but its implementation remains to be solved. The current study presents an EA prototype featuring the SME with minute adjustments of the material properties of Nitinol, a shape memory alloy, in combination with a suitable cooling strategy to prevent premature curling. Ten samples were successfully inserted by a CI surgeon into an artificial cochlear model submerged into a temperature-controllable water bath to simulate temporary hypothermia of the inner ear (31°C). Gentle insertions were possible, with an average insertion speed of 0.81 ± 0.14 mm/s. After recovery of body temperature, the desired position shift toward the modiolus was observed in all trials. Angular insertion depth increased by approximately 81.8° ± 23.4°. We demonstrate for the first time that using the body temperature responsive SME for perimodiolar EA positioning is feasible and does not impede a gentle surgical insertion.

Identifiants

pubmed: 35678249
doi: 10.1002/jbm.b.35107
doi:

Substances chimiques

Shape Memory Alloys 0
Water 059QF0KO0R

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2494-2505

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : 2751/1-1
Organisme : Germany's Excellence Strategy
ID : EXC 2177/1

Informations de copyright

© 2022 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals LLC.

Références

Gifford RH, Dorman MF, Shallop JK, Sydlowski SA. Evidence for the expansion of adult cochlear implant candidacy. Ear Hear. 2010;31:186-194.
Holder JT, Reynolds SM, Sunderhaus LW, Gifford RH. Current profile of adults presenting for preoperative Cochlear implant evaluation. Trends Hear. 2018;22:1-16.
Büchner A, Illg A, Majdani O, Lenarz T. Investigation of the effect of cochlear implant electrode length on speech comprehension in quiet and noise compared with the results with users of electro-acoustic-stimulation, a retrospective analysis. PLoS One. 2017;12:1-16.
Spitzer ER, Landsberger DM, Friedmann DR. Assessing the quality of low-frequency acoustic hearing: implications for combined electroacoustic stimulation with Cochlear implants. Ear Hear. 2021;42:475-486.
Dhanasingh A, Jolly C. An overview of cochlear implant electrode array designs. Hear Res. 2017;356:93-103.
Drouillard M, Torres R, Mamelle E, et al. Influence of electrode array stiffness and diameter on hearing in cochlear implanted Guinea pig. PLoS One. 2017;12:1-15.
Jwair S, Prins A, Wegner I, Stokroos RJ, Versnel H, Thomeer HGXM. Scalar translocation comparison between Lateral Wall and Perimodiolar Cochlear implant arrays - a meta-analysis. Laryngoscope. 2021;131:1358-1368.
Wanna GB, Noble JH, Carlson ML, et al. Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope. 2014;127:S1-S7.
Holden LK, Finley CC, Firszt JB, et al. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 2013;34:342-360.
Risi F. Considerations and rationale for cochlear implant electrode design-past, present and future. J Int Adv Otol. 2018;14:382-391.
Henderson E, Nash DH, Dempster WM. On the experimental testing of fine nitinol wires for medical devices. J Mech Behav Biomed Mater. 2011;4:261-268.
Pelton AR, Dicellol J, Miyazaki S. Optimisation of processing and properties of medical grade nitinol wire. Min Invas Ther Allied Technol. 2000;9:107-118.
Corbett, S. S., J. W. Swanson, J. Martyniuk, T. R. Clary, F. A. Spelman, B. Clopton, A. H. Voie, and C. N. Jolly. Multi-electrode Cochlear implant and method of manufacturing the same. US patent 5,630,839. 1997.
Spelman FA, Clopton BM, Voie A, et al. Cochlear implant with Schape memory material and method for implanting the same. Patent: US. 1998;5:800,500.
Min KS, Jun SB, Lim YS, Park S-I, Kim SJ. Modiolus-hugging intracochlear electrode array with shape memory alloy. Comput Math Methods Med. 2013;2013:250915.
Rau TS, Suzaly N, Pawsey N, Hügl S, Lenarz T, Majdani O. Histological evaluation of a cochlear implant electrode array with electrically activated shape change for perimodiolar positioning. Curr Dir Biomed Eng. 2018;4:145-148.
Rau TS, Harbach L, Pawsey N, et al. Insertion trauma of a cochlear implant electrode array with nitinol inlay. Eur Arch Oto Rhino Laryngol. 2016;273:3573-3585.
Pelton AR, Russell SM, DiCello J. The physical metallurgy of nitinol for medical applications. JOM. 2003;55:33-37.
Anagiotos A, Beutner D, Gostian AO, Schwarz D, Luers JC, Hüttenbrink KB. Insertion of cochlear implant electrode array using the underwater technique for preserving residual hearing. Otol Neurotol. 2016;37:339-344.
Kaufmann CR, Henslee AM, Claussen A, Hansen MR. Evaluation of insertion forces and cochlea trauma following robotics-assisted Cochlear implant electrode Array insertion. Otol Neurotol. 2020;41:631-638.
Perez E, Viziano A, Al-Zaghal Z, et al. Anatomical correlates and surgical considerations for localized therapeutic hypothermia application in Cochlear implantation surgery. Otol Neurotol. 2019;40:1167-1177.
Tamames I, King C, Huang CY, Telischi FF, Hoffer ME, Rajguru SM. Theoretical evaluation and experimental validation of localized therapeutic hypothermia application to preserve residual hearing after cochlear implantation. Ear Hear. 2018;39:712-719.
Bader W, Gottfried T, Degenhart G, et al. Measurement of the Intracochlear hypothermia distribution utilizing tympanic cavity hypothermic rinsing technique in a cochlea hypothermia model. Front Neurol. 2021;11:1-9.
Zuniga MG, Suzaly N, Lenarz T, Rau TS. On the stiffness properties of custom-made silicone dummies for the development of cochlear implant electrode arrays with a shape memory wire. Laryngorhinootologie. 2020;99:283.
Hügl S, Rülander K, Lenarz T, Majdani O, Rau TS. Investigation of ultra-low insertion speeds in an inelastic artificial cochlear model using custom-made cochlear implant electrodes. Eur Arch Oto Rhino Laryngol. 2018;275:2947-2956.
Undisz A, Fink M, Rettenmayr M. Determination of transformation properties of thin medical grade Ni-Ti wire by high-resolution bend and free recovery testing. J Mater Eng Perform. 2009;18:814-817.
Kontorinis G, Lenarz T, Stöver T, Paasche G. Impact of the insertion speed of cochlear implant electrodes on the insertion forces. Otol Neurotol. 2011;32:565-570.
Kesler K, Dillon NP, Fichera L, Labadie RF. Human kinematics of Cochlear implant surgery: an investigation of insertion micro-motions and speed limitations. Otolaryngol Head Neck Surg (United States). 2017;157:493-498.
Rau TS, Zuniga MG, Salcher R, Lenarz T. A simple tool to automate the insertion process in cochlear implant surgery. Int J Comput Assist Radiol Surg. 2020;15:1931-1939.
De Seta D, Daoudi H, Torres R, Ferrary E, Sterkers O, Nguyen Y. Robotics, automation, active electrode arrays, and new devices for cochlear implantation: a contemporary review. Hear Res. 2022;414:108425.
Vittoria S, Lahlou G, Torres R, et al. Robot-based assistance in middle ear surgery and cochlear implantation: first clinical report. Eur Arch Oto Rhino Laryngol. 2020;278:77-85.
Zuniga MG, Hügl S, Engst BG, Lenarz T, Rau TS. The effect of ultra-slow velocities on insertion forces: a study using a highly flexible straight electrode Array. Otol Neurotol. 2021;42:E1013-E1021.

Auteurs

Thomas S Rau (TS)

Department of Otolaryngology, Hannover Medical School, Hannover, Germany.
Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany.

Tim Ehmann (T)

Department of Otolaryngology, Hannover Medical School, Hannover, Germany.

M Geraldine Zuniga (MG)

Department of Otolaryngology, Hannover Medical School, Hannover, Germany.
Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany.

Katarzyna Plaskonka (K)

G.RAU GmbH & Co. KG, Pforzheim, Germany.

Andreas Keck (A)

G.RAU GmbH & Co. KG, Pforzheim, Germany.

Omid Majdani (O)

Department of Otolaryngology, Hannover Medical School, Hannover, Germany.
Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany.

Thomas Lenarz (T)

Department of Otolaryngology, Hannover Medical School, Hannover, Germany.
Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover Medical School, Hannover, Germany.

Articles similaires

Animals Stereocilia Mice Mice, Knockout Noise
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH