Deep learning-based lesion subtyping and prediction of clinical outcomes in COVID-19 pneumonia using chest CT.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 06 2022
Historique:
received: 15 08 2021
accepted: 12 05 2022
entrez: 7 6 2022
pubmed: 8 6 2022
medline: 10 6 2022
Statut: epublish

Résumé

The main objective of this work is to develop and evaluate an artificial intelligence system based on deep learning capable of automatically identifying, quantifying, and characterizing COVID-19 pneumonia patterns in order to assess disease severity and predict clinical outcomes, and to compare the prediction performance with respect to human reader severity assessment and whole lung radiomics. We propose a deep learning based scheme to automatically segment the different lesion subtypes in nonenhanced CT scans. The automatic lesion quantification was used to predict clinical outcomes. The proposed technique has been independently tested in a multicentric cohort of 103 patients, retrospectively collected between March and July of 2020. Segmentation of lesion subtypes was evaluated using both overlapping (Dice) and distance-based (Hausdorff and average surface) metrics, while the proposed system to predict clinically relevant outcomes was assessed using the area under the curve (AUC). Additionally, other metrics including sensitivity, specificity, positive predictive value and negative predictive value were estimated. 95% confidence intervals were properly calculated. The agreement between the automatic estimate of parenchymal damage (%) and the radiologists' severity scoring was strong, with a Spearman correlation coefficient (R) of 0.83. The automatic quantification of lesion subtypes was able to predict patient mortality, admission to the Intensive Care Units (ICU) and need for mechanical ventilation with an AUC of 0.87, 0.73 and 0.68 respectively. The proposed artificial intelligence system enabled a better prediction of those clinically relevant outcomes when compared to the radiologists' interpretation and to whole lung radiomics. In conclusion, deep learning lesion subtyping in COVID-19 pneumonia from noncontrast chest CT enables quantitative assessment of disease severity and better prediction of clinical outcomes with respect to whole lung radiomics or radiologists' severity score.

Identifiants

pubmed: 35672437
doi: 10.1038/s41598-022-13298-8
pii: 10.1038/s41598-022-13298-8
pmc: PMC9172615
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9387

Subventions

Organisme : NLM NIH HHS
ID : R21 LM013670
Pays : United States
Organisme : NIH HHS
ID : R21LM013670
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Acad Radiol. 2016 Apr;23(4):421-8
pubmed: 26947221
Eur Radiol. 2021 Oct;31(10):7925-7935
pubmed: 33856514
Thorax. 2021 Sep;76(9):920-929
pubmed: 33632764
JAMA. 2020 Mar 17;323(11):1061-1069
pubmed: 32031570
Image Anal Mov Organ Breast Thorac Images (2018). 2018 Sep;11040:225-237
pubmed: 32494780
Radiology. 2020 Aug;296(2):E65-E71
pubmed: 32191588
Radiol Artif Intell. 2020 Dec 16;3(2):e200098
pubmed: 33928257
Radiographics. 2020 Nov-Dec;40(7):1848-1865
pubmed: 33095680
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:303-306
pubmed: 32461782
Acad Radiol. 2011 Jun;18(6):661-71
pubmed: 21393027
Nat Commun. 2020 Aug 14;11(1):4080
pubmed: 32796848
Sci Rep. 2021 Mar 4;11(1):5148
pubmed: 33664342
IEEE Trans Med Imaging. 2016 May;35(5):1207-1216
pubmed: 26955021
Radiology. 2008 Mar;246(3):697-722
pubmed: 18195376
AJR Am J Roentgenol. 2020 May;214(5):1072-1077
pubmed: 32125873
Eur J Radiol. 2021 Jun;139:109583
pubmed: 33846041
NPJ Digit Med. 2021 Apr 22;4(1):75
pubmed: 33888856
Eur Radiol Exp. 2020 Aug 20;4(1):50
pubmed: 32814998
NPJ Digit Med. 2021 Jan 29;4(1):11
pubmed: 33514852
Sci Rep. 2020 Jan 15;10(1):338
pubmed: 31941918
Radiology. 2021 Jan;298(1):E18-E28
pubmed: 32729810
Lancet. 2020 Mar 28;395(10229):1054-1062
pubmed: 32171076
Lancet Respir Med. 2020 Nov;8(11):1144-1153
pubmed: 32109428
Cell. 2020 Sep 3;182(5):1360
pubmed: 32888496
Nat Methods. 2021 Feb;18(2):203-211
pubmed: 33288961
IEEE Rev Biomed Eng. 2021;14:4-15
pubmed: 32305937
Med Image Anal. 2021 Jan;67:101860
pubmed: 33171345
Ann Transl Med. 2020 Jul;8(14):859
pubmed: 32793703
Sci Rep. 2021 Jun 2;11(1):11591
pubmed: 34078950
Radiol Cardiothorac Imaging. 2020 Mar 17;2(2):e200110
pubmed: 33778566
Radiol Cardiothorac Imaging. 2020 Jul 23;2(4):e200322
pubmed: 33778612
Radiology. 2020 Jun;295(3):715-721
pubmed: 32053470
Radiology. 2020 Oct;297(1):E197-E206
pubmed: 32407255

Auteurs

David Bermejo-Peláez (D)

Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Av Complutense 30, 28040, Madrid, Spain.
CIBER-BBN, Madrid, Spain.
, Spotlab, Madrid, Spain.

Raúl San José Estépar (R)

Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.

María Fernández-Velilla (M)

Hospital Universitario La Paz, Madrid, Spain.

Carmelo Palacios Miras (C)

Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.

Guillermo Gallardo Madueño (G)

Clínica Universidad de Navarra, Pamplona, Spain.

Mariana Benegas (M)

Hospital Clinic de Barcelona-IDIBPAS, Barcelona, Spain.

Carolina Gotera Rivera (C)

Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
CIBER-ES, Madrid, Spain.

Sandra Cuerpo (S)

Hospital Clinic de Barcelona-IDIBPAS, Barcelona, Spain.
CIBER-ES, Madrid, Spain.

Miguel Luengo-Oroz (M)

, Spotlab, Madrid, Spain.

Jacobo Sellarés (J)

Hospital Clinic de Barcelona-IDIBPAS, Barcelona, Spain.
CIBER-ES, Madrid, Spain.
Universidad de Vic (UVIC), Vic, Spain.

Marcelo Sánchez (M)

Hospital Clinic de Barcelona-IDIBPAS, Barcelona, Spain.

Gorka Bastarrika (G)

Clínica Universidad de Navarra, Pamplona, Spain.

German Peces Barba (G)

Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
CIBER-ES, Madrid, Spain.

Luis M Seijo (LM)

Clínica Universidad de Navarra, Pamplona, Spain.
CIBER-ES, Madrid, Spain.

María J Ledesma-Carbayo (MJ)

Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Av Complutense 30, 28040, Madrid, Spain. mj.ledesma@upm.es.
CIBER-BBN, Madrid, Spain. mj.ledesma@upm.es.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH