Neuroimaging signatures predicting motor improvement to focused ultrasound subthalamotomy in Parkinson's disease.


Journal

NPJ Parkinson's disease
ISSN: 2373-8057
Titre abrégé: NPJ Parkinsons Dis
Pays: United States
ID NLM: 101675390

Informations de publication

Date de publication:
03 Jun 2022
Historique:
received: 09 11 2021
accepted: 13 05 2022
entrez: 6 6 2022
pubmed: 7 6 2022
medline: 7 6 2022
Statut: epublish

Résumé

Subthalamotomy using transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) is a novel and promising treatment for Parkinson's Disease (PD). In this study, we investigate if baseline brain imaging features can be early predictors of tcMRgFUS-subthalamotomy efficacy, as well as which are the post-treatment brain changes associated with the clinical outcomes. Towards this aim, functional and structural neuroimaging and extensive clinical data from thirty-five PD patients enrolled in a double-blind tcMRgFUS-subthalamotomy clinical trial were analyzed. A multivariate cross-correlation analysis revealed that the baseline multimodal imaging data significantly explain (P < 0.005, FWE-corrected) the inter-individual variability in response to treatment. Most predictive features at baseline included neural fluctuations in distributed cortical regions and structural integrity in the putamen and parietal regions. Additionally, a similar multivariate analysis showed that the population variance in clinical improvements is significantly explained (P < 0.001, FWE-corrected) by a distributed network of concurrent functional and structural brain changes in frontotemporal, parietal, occipital, and cerebellar regions, as opposed to local changes in very specific brain regions. Overall, our findings reveal specific quantitative brain signatures highly predictive of tcMRgFUS-subthalamotomy responsiveness in PD. The unanticipated weight of a cortical-subcortical-cerebellar subnetwork in defining clinical outcome extends the current biological understanding of the mechanisms associated with clinical benefits.

Identifiants

pubmed: 35665753
doi: 10.1038/s41531-022-00332-9
pii: 10.1038/s41531-022-00332-9
pmc: PMC9166695
doi:

Types de publication

Journal Article

Langues

eng

Pagination

70

Informations de copyright

© 2022. The Author(s).

Références

Diaz, N. L. & Waters, C. H. Current strategies in the treatment of Parkinson’s disease and a personalized approach to management. Expert Rev. Neurother. 9, 1781–1789 (2009).
pubmed: 19951137 doi: 10.1586/ern.09.117
Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355, 896–908 (2006).
pubmed: 16943402 doi: 10.1056/NEJMoa060281
Rascol, O., Lozano, A., Stern, M. & Poewe, W. Milestones in Parkinson’s disease therapeutics. Mov. Disord. 26, 1072–1082 (2011).
pubmed: 21626552 doi: 10.1002/mds.23714
Wichmann, T. & DeLong, M. R. Deep brain stimulation for movement disorders of basal Ganglia origin: restoring function or functionality? Neurotherapeutics 13, 264–283 (2016).
pubmed: 26956115 pmcid: 4824026 doi: 10.1007/s13311-016-0426-6
Rodriguez-Oroz, M. C. et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128, 2240–2249 (2005).
pubmed: 15975946 doi: 10.1093/brain/awh571
Boutet, A. et al. Functional MRI safety and artifacts during deep brain stimulation: experience in 102 patients. Radiology 293, 174–183 (2019).
pubmed: 31385756 doi: 10.1148/radiol.2019190546
Quadri, S. A. et al. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg. Focus 44, 1–9 (2018).
doi: 10.3171/2017.11.FOCUS17610
Foffani, G. et al. Focused ultrasound in Parkinson’s disease: a twofold path toward disease modification. Mov. Disord. 34, 1262–1273 (2019).
pubmed: 31412430 doi: 10.1002/mds.27805
Moosa, S. et al. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson’s disease. Mov. Disord. 34, 1243–1251 (2019).
pubmed: 31291491 doi: 10.1002/mds.27779
Martínez-Fernández, R. et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. Lancet Neurol. 17, 54–63 (2018).
pubmed: 29203153 doi: 10.1016/S1474-4422(17)30403-9
Rodriguez-Rojas, R. et al. Functional impact of subthalamotomy by magnetic resonance–guided focused ultrasound in Parkinson’s disease: a hybrid PET/MR study of resting-state brain metabolism. Eur. J. Nucl. Med. Mol. Imaging 47, 425–436 (2020).
doi: 10.1007/s00259-019-04497-z
Pahwa, R. et al. Long-term evaluation of deep brain stimulation of the thalamus. J. Neurosurg. 104, 506–512 (2006).
pubmed: 16619653 doi: 10.3171/jns.2006.104.4.506
Horn, A. et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 82, 67–78 (2017).
pubmed: 28586141 pmcid: 5880678 doi: 10.1002/ana.24974
Deep-Brain Stimulation for Parkinson's Disease Study Group et al. Deep-brain stimulation of the subthalamic nucleus or the Pars interna of the globus Pallidus in Parkinson’s disease. N. Engl. J. Med. 345, 956–963 (2001).
Martínez-Fernández, R. et al. Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease. N. Engl. J. Med. 383, 2501–2513 (2020).
pubmed: 33369354 doi: 10.1056/NEJMoa2016311
Sperling, S. A. et al. Focused ultrasound thalamotomy in Parkinson disease: nonmotor outcomes and quality of life. Neurology 91, e1275–e1284 (2018).
pubmed: 30158160 doi: 10.1212/WNL.0000000000006279
Bond, A. E. et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory. JAMA Neurol. 74, 1412–1418 (2017).
pubmed: 29084313 pmcid: 5822192 doi: 10.1001/jamaneurol.2017.3098
Iacopino, D. G. et al. Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson’s disease. Neurosurg. Focus 44, E7 (2018).
pubmed: 29385927 doi: 10.3171/2017.11.FOCUS17614
Zaaroor, M. et al. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson’s disease and essential tremor cases. J. Neurosurg. 128, 202–210 (2018).
pubmed: 28298022 doi: 10.3171/2016.10.JNS16758
Magara, A. et al. First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. J. Ther. Ultrasound 2, 11 (2014).
pubmed: 25512869 pmcid: 4266014 doi: 10.1186/2050-5736-2-11
Jung, N. Y. et al. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson’s disease: a Phase I clinical trial. J. Neurosurg. (2018).
Chang, W. S. et al. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull. J. Neurosurg. JNS 124, 411–416 (2016).
doi: 10.3171/2015.3.JNS142592
Pineda-Pardo, J. A. et al. Transcranial magnetic resonance-guided focused ultrasound thalamotomy in essential tremor: a comprehensive lesion characterization. Neurosurgery 87, 256–265 (2020).
pubmed: 31574145 doi: 10.1093/neuros/nyz395
Carbonell, F., Zijdenbos, A. P. & Bedell, B. J. Spatially distributed amyloid-β reduces glucose metabolism in mild cognitive impairment. J. Alzheimer’s Dis. 73, 543–557 (2020).
doi: 10.3233/JAD-190560
McIntosh, A. R. & Lobaugh, N. J. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage 23, S250–S263 (2004).
pubmed: 15501095 doi: 10.1016/j.neuroimage.2004.07.020
Zöller, D. et al. Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome. Neuroimage 149, 85–97 (2017).
pubmed: 28143774 doi: 10.1016/j.neuroimage.2017.01.064
Ballarini, T. et al. Unraveling connectivity changes due to dopaminergic therapy in chronically treated Parkinson’s disease patients. Sci. Rep. 8, 14328 (2018).
pubmed: 30254336 pmcid: 6156510 doi: 10.1038/s41598-018-31988-0
Horn, A. et al. Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain 142, 3129–3143 (2019).
pubmed: 31412106 doi: 10.1093/brain/awz239
Saenger, V. M. et al. Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson’s disease. Sci. Rep. 7, 1–14 (2017).
doi: 10.1038/s41598-017-10003-y
Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 8, 448–460 (2002).
pubmed: 11939702 doi: 10.1017/S1355617702813248
van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).
pubmed: 24231140 doi: 10.1016/j.tics.2013.09.012
Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).
pubmed: 18597554 pmcid: 2443193 doi: 10.1371/journal.pbio.0060159
Iturria-Medina, Y., Sotero, R. C., Canales-Rodríguez, E. J., Alemán-Gómez, Y. & Melie-García, L. Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage 40, 1064–1076 (2008).
pubmed: 18272400 doi: 10.1016/j.neuroimage.2007.10.060
Blesa, J. et al. Compensatory mechanisms in Parkinson’s disease: circuits adaptations and role in disease modification. Exp. Neurol. 298, 148–161 (2017).
pubmed: 28987461 doi: 10.1016/j.expneurol.2017.10.002
Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).
pubmed: 12498954 doi: 10.1016/S0197-4580(02)00065-9
Lang, A. E. & Obeso, J. A. Time to move beyond nigrostriatal dopamine deficiency in Parkinson’s disease. Ann. Neurol. 55, 761–765 (2004).
pubmed: 15174009 doi: 10.1002/ana.20102
Bostan, A. C. & Strick, P. L. The basal ganglia and the cerebellum: nodes in an integrated network. Nat. Rev. Neurosci. 19, 338–350 (2018).
pubmed: 29643480 pmcid: 6503669 doi: 10.1038/s41583-018-0002-7
Wu, T. & Hallett, M. The cerebellum in Parkinson’s disease. Brain 136, 696–709 (2013).
pubmed: 23404337 pmcid: 7273201 doi: 10.1093/brain/aws360
Zou, Q. H. et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J. Neurosci. Methods 172, 137–141 (2008).
pubmed: 18501969 pmcid: 3902859 doi: 10.1016/j.jneumeth.2008.04.012
Kann, S. J., Chang, C., Manza, P. & Leung, H. C. Akinetic rigid symptoms are associated with decline in a cortical motor network in Parkinson’s disease. npj Park. Dis. 6, 1–8 (2020).
Amboni, M. et al. Resting-state functional connectivity associated with mild cognitive impairment in Parkinson’s disease. J. Neurol. 262, 425–434 (2014).
pubmed: 25428532 doi: 10.1007/s00415-014-7591-5
Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006).
pubmed: 16399673 pmcid: 6674299 doi: 10.1523/JNEUROSCI.3874-05.2006
Crossley, N. A. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382–2395 (2014).
pubmed: 25057133 pmcid: 4107735 doi: 10.1093/brain/awu132
Iturria-medina, Y., Sotero, R. C., Toussaint, P. J. & Evans, A. C. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders. PLoS Comput. Biol. 10, e1003956 (2014).
Iturria-medina, Y. & Evans, A. C. On the central role of brain connectivity in neurodegenerative disease progression. Front. Aging Neurosci. 7, 1–10 (2015).
doi: 10.3389/fnagi.2015.00090
Riess, O. & Krüger, R. In Diagnosis and Treatment of Parkinson’s Disease–State of the Art (eds. Przuntek, H. & Müller, T.) 113–125 (Springer Vienna, 1999).
Rodriguez-Rojas, R. et al. Subthalamotomy for Parkinson’s disease: clinical outcome and topography of lesions. J. Neurol. Neurosurg. Psychiatry 89, 572–578 (2018).
pubmed: 29222224 doi: 10.1136/jnnp-2017-316241
Brown, E. G. et al. Cerebellar deep brain stimulation for acquired hemidystonia. Mov. Disord. Clin. Pract. 7, 188–193 (2020).
pubmed: 32071938 pmcid: 7011833 doi: 10.1002/mdc3.12876
Wathen, C. A., Frizon, L. A., Maiti, T. K., Baker, K. B. & Machado, A. G. Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: from laboratory to clinical trial. Neurosurg. Focus 45, E13 (2018).
pubmed: 30064319 doi: 10.3171/2018.5.FOCUS18164
Sled, J., Zijdenbos, A. & Evans, A. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998).
pubmed: 9617910 doi: 10.1109/42.668698
Yang, Y., Li, X.-Y., Gong, L., Zhu, Y.-L. & Hao, Y.-L. Tai chi for improvement of motor function, balance and Gait in Parkinson’s disease: a systematic review and meta-analysis. PLoS One 9, e102942 (2014).
pubmed: 25047456 pmcid: 4105461 doi: 10.1371/journal.pone.0102942
Sarasso, E., Agosta, F., Piramide, N. & Filippi, M. Progression of grey and white matter brain damage in Parkinson’s disease: a critical review of structural MRI literature. J. Neurol. 268, 3144–3179 (2021).
pubmed: 32378035 doi: 10.1007/s00415-020-09863-8
Tinkhauser, G. et al. Beta burst coupling across the motor circuit in Parkinson’s disease. Neurobiol. Dis. 117, 217–225 (2018).
pubmed: 29909050 pmcid: 6054304 doi: 10.1016/j.nbd.2018.06.007
Eisinger, R. S. et al. Parkinsonian beta dynamics during rest and movement in the dorsal Pallidum and subthalamic nucleus. J. Neurosci. 40, 2859–2867 (2020).
pubmed: 32107277 pmcid: 7117906 doi: 10.1523/JNEUROSCI.2113-19.2020
Todorov, H., Searle-White, E. & Gerber, S. Applying univariate vs. multivariate statistics to investigate therapeutic efficacy in (pre)clinical trials: a Monte Carlo simulation study on the example of a controlled preclinical neurotrauma trial. PLoS One 15, 1–20 (2020).
doi: 10.1371/journal.pone.0230798
Evans, A., Kamber, M., Collins, D. & MacDonald, D. In Magnetic Resonance Scanning and Epilepsy (eds. Shorvon S. et al.) D263–274 (Plenum Pub Corp, 1994).
Jenkinson, M., Bannister, P., Brady, J. & Smith, S. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).
pubmed: 12377157 doi: 10.1006/nimg.2002.1132
Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007).
pubmed: 17761438 doi: 10.1016/j.neuroimage.2007.07.007
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).
pubmed: 11771995 doi: 10.1006/nimg.2001.0978
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430 doi: 10.1016/j.neuroimage.2006.01.021
Zang, Y., Jiang, T., Lu, Y., He, Y. & Tian, L. Regional homogeneity approach to fMRI data analysis. Neuroimage 22, 394–400 (2004).
pubmed: 15110032 doi: 10.1016/j.neuroimage.2003.12.030
Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).
pubmed: 28230847 pmcid: 5988350 doi: 10.1038/nn.4478
Xia, M., Wang, J. & He, Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One 8, e68910 (2013).

Auteurs

Sue-Jin Lin (SJ)

Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada.
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Canada.

Rafael Rodriguez-Rojas (R)

HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Mostoles. HM Hospitales, Madrid, Spain. rrodriguez.hmcinac@hmhospitales.com.
Network Center for Biomedical Research on Neurodegenerative Diseases, Carlos III Institute, Madrid, Spain. rrodriguez.hmcinac@hmhospitales.com.

Tobias R Baumeister (TR)

Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada.
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Canada.

Christophe Lenglos (C)

Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada.
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Canada.

Jose A Pineda-Pardo (JA)

HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Mostoles. HM Hospitales, Madrid, Spain.
Network Center for Biomedical Research on Neurodegenerative Diseases, Carlos III Institute, Madrid, Spain.
Universidad CEU-San Pablo, Madrid, Spain.

Jorge U Máñez-Miró (JU)

HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Mostoles. HM Hospitales, Madrid, Spain.

Marta Del Alamo (M)

HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Mostoles. HM Hospitales, Madrid, Spain.

Raul Martinez-Fernandez (R)

HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Mostoles. HM Hospitales, Madrid, Spain.
Network Center for Biomedical Research on Neurodegenerative Diseases, Carlos III Institute, Madrid, Spain.

Jose A Obeso (JA)

HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, Mostoles. HM Hospitales, Madrid, Spain.
Network Center for Biomedical Research on Neurodegenerative Diseases, Carlos III Institute, Madrid, Spain.
Universidad CEU-San Pablo, Madrid, Spain.

Yasser Iturria-Medina (Y)

Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada. yasser.iturriamedina@mcgill.ca.
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada. yasser.iturriamedina@mcgill.ca.
Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Canada. yasser.iturriamedina@mcgill.ca.

Classifications MeSH