Neuroimaging signatures predicting motor improvement to focused ultrasound subthalamotomy in Parkinson's disease.
Journal
NPJ Parkinson's disease
ISSN: 2373-8057
Titre abrégé: NPJ Parkinsons Dis
Pays: United States
ID NLM: 101675390
Informations de publication
Date de publication:
03 Jun 2022
03 Jun 2022
Historique:
received:
09
11
2021
accepted:
13
05
2022
entrez:
6
6
2022
pubmed:
7
6
2022
medline:
7
6
2022
Statut:
epublish
Résumé
Subthalamotomy using transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) is a novel and promising treatment for Parkinson's Disease (PD). In this study, we investigate if baseline brain imaging features can be early predictors of tcMRgFUS-subthalamotomy efficacy, as well as which are the post-treatment brain changes associated with the clinical outcomes. Towards this aim, functional and structural neuroimaging and extensive clinical data from thirty-five PD patients enrolled in a double-blind tcMRgFUS-subthalamotomy clinical trial were analyzed. A multivariate cross-correlation analysis revealed that the baseline multimodal imaging data significantly explain (P < 0.005, FWE-corrected) the inter-individual variability in response to treatment. Most predictive features at baseline included neural fluctuations in distributed cortical regions and structural integrity in the putamen and parietal regions. Additionally, a similar multivariate analysis showed that the population variance in clinical improvements is significantly explained (P < 0.001, FWE-corrected) by a distributed network of concurrent functional and structural brain changes in frontotemporal, parietal, occipital, and cerebellar regions, as opposed to local changes in very specific brain regions. Overall, our findings reveal specific quantitative brain signatures highly predictive of tcMRgFUS-subthalamotomy responsiveness in PD. The unanticipated weight of a cortical-subcortical-cerebellar subnetwork in defining clinical outcome extends the current biological understanding of the mechanisms associated with clinical benefits.
Identifiants
pubmed: 35665753
doi: 10.1038/s41531-022-00332-9
pii: 10.1038/s41531-022-00332-9
pmc: PMC9166695
doi:
Types de publication
Journal Article
Langues
eng
Pagination
70Informations de copyright
© 2022. The Author(s).
Références
Diaz, N. L. & Waters, C. H. Current strategies in the treatment of Parkinson’s disease and a personalized approach to management. Expert Rev. Neurother. 9, 1781–1789 (2009).
pubmed: 19951137
doi: 10.1586/ern.09.117
Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355, 896–908 (2006).
pubmed: 16943402
doi: 10.1056/NEJMoa060281
Rascol, O., Lozano, A., Stern, M. & Poewe, W. Milestones in Parkinson’s disease therapeutics. Mov. Disord. 26, 1072–1082 (2011).
pubmed: 21626552
doi: 10.1002/mds.23714
Wichmann, T. & DeLong, M. R. Deep brain stimulation for movement disorders of basal Ganglia origin: restoring function or functionality? Neurotherapeutics 13, 264–283 (2016).
pubmed: 26956115
pmcid: 4824026
doi: 10.1007/s13311-016-0426-6
Rodriguez-Oroz, M. C. et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128, 2240–2249 (2005).
pubmed: 15975946
doi: 10.1093/brain/awh571
Boutet, A. et al. Functional MRI safety and artifacts during deep brain stimulation: experience in 102 patients. Radiology 293, 174–183 (2019).
pubmed: 31385756
doi: 10.1148/radiol.2019190546
Quadri, S. A. et al. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg. Focus 44, 1–9 (2018).
doi: 10.3171/2017.11.FOCUS17610
Foffani, G. et al. Focused ultrasound in Parkinson’s disease: a twofold path toward disease modification. Mov. Disord. 34, 1262–1273 (2019).
pubmed: 31412430
doi: 10.1002/mds.27805
Moosa, S. et al. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson’s disease. Mov. Disord. 34, 1243–1251 (2019).
pubmed: 31291491
doi: 10.1002/mds.27779
Martínez-Fernández, R. et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. Lancet Neurol. 17, 54–63 (2018).
pubmed: 29203153
doi: 10.1016/S1474-4422(17)30403-9
Rodriguez-Rojas, R. et al. Functional impact of subthalamotomy by magnetic resonance–guided focused ultrasound in Parkinson’s disease: a hybrid PET/MR study of resting-state brain metabolism. Eur. J. Nucl. Med. Mol. Imaging 47, 425–436 (2020).
doi: 10.1007/s00259-019-04497-z
Pahwa, R. et al. Long-term evaluation of deep brain stimulation of the thalamus. J. Neurosurg. 104, 506–512 (2006).
pubmed: 16619653
doi: 10.3171/jns.2006.104.4.506
Horn, A. et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 82, 67–78 (2017).
pubmed: 28586141
pmcid: 5880678
doi: 10.1002/ana.24974
Deep-Brain Stimulation for Parkinson's Disease Study Group et al. Deep-brain stimulation of the subthalamic nucleus or the Pars interna of the globus Pallidus in Parkinson’s disease. N. Engl. J. Med. 345, 956–963 (2001).
Martínez-Fernández, R. et al. Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease. N. Engl. J. Med. 383, 2501–2513 (2020).
pubmed: 33369354
doi: 10.1056/NEJMoa2016311
Sperling, S. A. et al. Focused ultrasound thalamotomy in Parkinson disease: nonmotor outcomes and quality of life. Neurology 91, e1275–e1284 (2018).
pubmed: 30158160
doi: 10.1212/WNL.0000000000006279
Bond, A. E. et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory. JAMA Neurol. 74, 1412–1418 (2017).
pubmed: 29084313
pmcid: 5822192
doi: 10.1001/jamaneurol.2017.3098
Iacopino, D. G. et al. Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson’s disease. Neurosurg. Focus 44, E7 (2018).
pubmed: 29385927
doi: 10.3171/2017.11.FOCUS17614
Zaaroor, M. et al. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson’s disease and essential tremor cases. J. Neurosurg. 128, 202–210 (2018).
pubmed: 28298022
doi: 10.3171/2016.10.JNS16758
Magara, A. et al. First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. J. Ther. Ultrasound 2, 11 (2014).
pubmed: 25512869
pmcid: 4266014
doi: 10.1186/2050-5736-2-11
Jung, N. Y. et al. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson’s disease: a Phase I clinical trial. J. Neurosurg. (2018).
Chang, W. S. et al. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull. J. Neurosurg. JNS 124, 411–416 (2016).
doi: 10.3171/2015.3.JNS142592
Pineda-Pardo, J. A. et al. Transcranial magnetic resonance-guided focused ultrasound thalamotomy in essential tremor: a comprehensive lesion characterization. Neurosurgery 87, 256–265 (2020).
pubmed: 31574145
doi: 10.1093/neuros/nyz395
Carbonell, F., Zijdenbos, A. P. & Bedell, B. J. Spatially distributed amyloid-β reduces glucose metabolism in mild cognitive impairment. J. Alzheimer’s Dis. 73, 543–557 (2020).
doi: 10.3233/JAD-190560
McIntosh, A. R. & Lobaugh, N. J. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage 23, S250–S263 (2004).
pubmed: 15501095
doi: 10.1016/j.neuroimage.2004.07.020
Zöller, D. et al. Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome. Neuroimage 149, 85–97 (2017).
pubmed: 28143774
doi: 10.1016/j.neuroimage.2017.01.064
Ballarini, T. et al. Unraveling connectivity changes due to dopaminergic therapy in chronically treated Parkinson’s disease patients. Sci. Rep. 8, 14328 (2018).
pubmed: 30254336
pmcid: 6156510
doi: 10.1038/s41598-018-31988-0
Horn, A. et al. Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain 142, 3129–3143 (2019).
pubmed: 31412106
doi: 10.1093/brain/awz239
Saenger, V. M. et al. Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson’s disease. Sci. Rep. 7, 1–14 (2017).
doi: 10.1038/s41598-017-10003-y
Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 8, 448–460 (2002).
pubmed: 11939702
doi: 10.1017/S1355617702813248
van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).
pubmed: 24231140
doi: 10.1016/j.tics.2013.09.012
Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).
pubmed: 18597554
pmcid: 2443193
doi: 10.1371/journal.pbio.0060159
Iturria-Medina, Y., Sotero, R. C., Canales-Rodríguez, E. J., Alemán-Gómez, Y. & Melie-García, L. Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage 40, 1064–1076 (2008).
pubmed: 18272400
doi: 10.1016/j.neuroimage.2007.10.060
Blesa, J. et al. Compensatory mechanisms in Parkinson’s disease: circuits adaptations and role in disease modification. Exp. Neurol. 298, 148–161 (2017).
pubmed: 28987461
doi: 10.1016/j.expneurol.2017.10.002
Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).
pubmed: 12498954
doi: 10.1016/S0197-4580(02)00065-9
Lang, A. E. & Obeso, J. A. Time to move beyond nigrostriatal dopamine deficiency in Parkinson’s disease. Ann. Neurol. 55, 761–765 (2004).
pubmed: 15174009
doi: 10.1002/ana.20102
Bostan, A. C. & Strick, P. L. The basal ganglia and the cerebellum: nodes in an integrated network. Nat. Rev. Neurosci. 19, 338–350 (2018).
pubmed: 29643480
pmcid: 6503669
doi: 10.1038/s41583-018-0002-7
Wu, T. & Hallett, M. The cerebellum in Parkinson’s disease. Brain 136, 696–709 (2013).
pubmed: 23404337
pmcid: 7273201
doi: 10.1093/brain/aws360
Zou, Q. H. et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J. Neurosci. Methods 172, 137–141 (2008).
pubmed: 18501969
pmcid: 3902859
doi: 10.1016/j.jneumeth.2008.04.012
Kann, S. J., Chang, C., Manza, P. & Leung, H. C. Akinetic rigid symptoms are associated with decline in a cortical motor network in Parkinson’s disease. npj Park. Dis. 6, 1–8 (2020).
Amboni, M. et al. Resting-state functional connectivity associated with mild cognitive impairment in Parkinson’s disease. J. Neurol. 262, 425–434 (2014).
pubmed: 25428532
doi: 10.1007/s00415-014-7591-5
Achard, S., Salvador, R., Whitcher, B., Suckling, J. & Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006).
pubmed: 16399673
pmcid: 6674299
doi: 10.1523/JNEUROSCI.3874-05.2006
Crossley, N. A. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382–2395 (2014).
pubmed: 25057133
pmcid: 4107735
doi: 10.1093/brain/awu132
Iturria-medina, Y., Sotero, R. C., Toussaint, P. J. & Evans, A. C. Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders. PLoS Comput. Biol. 10, e1003956 (2014).
Iturria-medina, Y. & Evans, A. C. On the central role of brain connectivity in neurodegenerative disease progression. Front. Aging Neurosci. 7, 1–10 (2015).
doi: 10.3389/fnagi.2015.00090
Riess, O. & Krüger, R. In Diagnosis and Treatment of Parkinson’s Disease–State of the Art (eds. Przuntek, H. & Müller, T.) 113–125 (Springer Vienna, 1999).
Rodriguez-Rojas, R. et al. Subthalamotomy for Parkinson’s disease: clinical outcome and topography of lesions. J. Neurol. Neurosurg. Psychiatry 89, 572–578 (2018).
pubmed: 29222224
doi: 10.1136/jnnp-2017-316241
Brown, E. G. et al. Cerebellar deep brain stimulation for acquired hemidystonia. Mov. Disord. Clin. Pract. 7, 188–193 (2020).
pubmed: 32071938
pmcid: 7011833
doi: 10.1002/mdc3.12876
Wathen, C. A., Frizon, L. A., Maiti, T. K., Baker, K. B. & Machado, A. G. Deep brain stimulation of the cerebellum for poststroke motor rehabilitation: from laboratory to clinical trial. Neurosurg. Focus 45, E13 (2018).
pubmed: 30064319
doi: 10.3171/2018.5.FOCUS18164
Sled, J., Zijdenbos, A. & Evans, A. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998).
pubmed: 9617910
doi: 10.1109/42.668698
Yang, Y., Li, X.-Y., Gong, L., Zhu, Y.-L. & Hao, Y.-L. Tai chi for improvement of motor function, balance and Gait in Parkinson’s disease: a systematic review and meta-analysis. PLoS One 9, e102942 (2014).
pubmed: 25047456
pmcid: 4105461
doi: 10.1371/journal.pone.0102942
Sarasso, E., Agosta, F., Piramide, N. & Filippi, M. Progression of grey and white matter brain damage in Parkinson’s disease: a critical review of structural MRI literature. J. Neurol. 268, 3144–3179 (2021).
pubmed: 32378035
doi: 10.1007/s00415-020-09863-8
Tinkhauser, G. et al. Beta burst coupling across the motor circuit in Parkinson’s disease. Neurobiol. Dis. 117, 217–225 (2018).
pubmed: 29909050
pmcid: 6054304
doi: 10.1016/j.nbd.2018.06.007
Eisinger, R. S. et al. Parkinsonian beta dynamics during rest and movement in the dorsal Pallidum and subthalamic nucleus. J. Neurosci. 40, 2859–2867 (2020).
pubmed: 32107277
pmcid: 7117906
doi: 10.1523/JNEUROSCI.2113-19.2020
Todorov, H., Searle-White, E. & Gerber, S. Applying univariate vs. multivariate statistics to investigate therapeutic efficacy in (pre)clinical trials: a Monte Carlo simulation study on the example of a controlled preclinical neurotrauma trial. PLoS One 15, 1–20 (2020).
doi: 10.1371/journal.pone.0230798
Evans, A., Kamber, M., Collins, D. & MacDonald, D. In Magnetic Resonance Scanning and Epilepsy (eds. Shorvon S. et al.) D263–274 (Plenum Pub Corp, 1994).
Jenkinson, M., Bannister, P., Brady, J. & Smith, S. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).
pubmed: 12377157
doi: 10.1006/nimg.2002.1132
Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007).
pubmed: 17761438
doi: 10.1016/j.neuroimage.2007.07.007
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).
pubmed: 11771995
doi: 10.1006/nimg.2001.0978
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Zang, Y., Jiang, T., Lu, Y., He, Y. & Tian, L. Regional homogeneity approach to fMRI data analysis. Neuroimage 22, 394–400 (2004).
pubmed: 15110032
doi: 10.1016/j.neuroimage.2003.12.030
Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).
pubmed: 28230847
pmcid: 5988350
doi: 10.1038/nn.4478
Xia, M., Wang, J. & He, Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One 8, e68910 (2013).