Dissecting the Genetic Architecture of Carbon Partitioning in Sorghum Using Multiscale Phenotypes.

Nested Association Mapping carbon partitioning linear mixed models pleiotropy sink source

Journal

Frontiers in plant science
ISSN: 1664-462X
Titre abrégé: Front Plant Sci
Pays: Switzerland
ID NLM: 101568200

Informations de publication

Date de publication:
2022
Historique:
received: 05 10 2021
accepted: 19 04 2022
entrez: 6 6 2022
pubmed: 7 6 2022
medline: 7 6 2022
Statut: epublish

Résumé

Carbon partitioning in plants may be viewed as a dynamic process composed of the many interactions between sources and sinks. The accumulation and distribution of fixed carbon is not dictated simply by the sink strength and number but is dependent upon the source, pathways, and interactions of the system. As such, the study of carbon partitioning through perturbations to the system or through focus on individual traits may fail to produce actionable developments or a comprehensive understanding of the mechanisms underlying this complex process. Using the recently published sorghum carbon-partitioning panel, we collected both macroscale phenotypic characteristics such as plant height, above-ground biomass, and dry weight along with microscale compositional traits to deconvolute the carbon-partitioning pathways in this multipurpose crop. Multivariate analyses of traits resulted in the identification of numerous loci associated with several distinct carbon-partitioning traits, which putatively regulate sugar content, manganese homeostasis, and nitrate transportation. Using a multivariate adaptive shrinkage approach, we identified several loci associated with multiple traits suggesting that pleiotropic and/or interactive effects may positively influence multiple carbon-partitioning traits, or these overlaps may represent molecular switches mediating basal carbon allocating or partitioning networks. Conversely, we also identify a carbon tradeoff where reduced lignin content is associated with increased sugar content. The results presented here support previous studies demonstrating the convoluted nature of carbon partitioning in sorghum and emphasize the importance of taking a holistic approach to the study of carbon partitioning by utilizing multiscale phenotypes.

Identifiants

pubmed: 35665170
doi: 10.3389/fpls.2022.790005
pmc: PMC9159972
doi:

Types de publication

Journal Article

Langues

eng

Pagination

790005

Informations de copyright

Copyright © 2022 Boatwright, Sapkota, Myers, Kumar, Cox, Jordan and Kresovich.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Am J Hum Genet. 2018 Sep 6;103(3):338-348
pubmed: 30100085
Plant J. 2018 Jan;93(2):338-354
pubmed: 29161754
J Exp Bot. 2021 Sep 2;72(17):6018-6026
pubmed: 34142128
Nat Genet. 2019 Jan;51(1):187-195
pubmed: 30478440
J Plant Physiol. 2012 Apr 15;169(6):605-13
pubmed: 22325624
Am J Hum Genet. 2007 Sep;81(3):559-75
pubmed: 17701901
Plant Direct. 2018 Jul 23;2(7):e00070
pubmed: 31245734
Photosynth Res. 1991 Apr;28(1):1-7
pubmed: 24414793
Front Plant Sci. 2013 Jun 04;4:177
pubmed: 23761804
Genetics. 2021 Jul 14;218(3):
pubmed: 34100945
Orig Life Evol Biosph. 2015 Sep;45(3):351-7
pubmed: 26017176
G3 (Bethesda). 2020 May 4;10(5):1511-1520
pubmed: 32132167
Curr Opin Biotechnol. 2012 Jun;23(3):323-9
pubmed: 22204822
Genomics Proteomics Bioinformatics. 2021 Aug;19(4):629-640
pubmed: 34492338
Trends Plant Sci. 2008 Aug;13(8):415-20
pubmed: 18650120
Plant Physiol. 2009 Jan;149(1):71-81
pubmed: 19126697
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:509-540
pubmed: 15012299
J Plant Physiol. 2011 Dec 15;168(18):2169-76
pubmed: 21835494
Genetics. 2015 Feb;199(2):379-98
pubmed: 25527288
Materials (Basel). 2019 Apr 12;12(8):
pubmed: 31013774
J Exp Bot. 2019 Jun 28;70(12):3357-3371
pubmed: 30949711
PLoS Genet. 2013;9(2):e1003264
pubmed: 23408905
Plant Cell Physiol. 2020 Aug 1;61(8):1427-1437
pubmed: 32186727
Genetics. 2010 Sep;186(1):373-83
pubmed: 20551444
G3 (Bethesda). 2017 Jun 7;7(6):1643-1652
pubmed: 28592647
Gigascience. 2019 Feb 1;8(2):
pubmed: 30535326
Funct Plant Biol. 2009 Sep;36(9):761-769
pubmed: 32688686
PLoS One. 2016 Jun 06;11(6):e0156744
pubmed: 27271781
BMC Genomics. 2019 May 27;20(1):420
pubmed: 31133004
G3 (Bethesda). 2018 Jul 31;8(8):2563-2572
pubmed: 29853656
Theor Appl Genet. 2014 Sep;127(9):1935-48
pubmed: 25023408
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):453-8
pubmed: 23267105
G3 (Bethesda). 2019 Dec 3;9(12):4045-4057
pubmed: 31611346
Plant Genome. 2016 Jul;9(2):
pubmed: 27898806
J Exp Bot. 2014 Jul;65(13):3479-89
pubmed: 24958898
Genetics. 2019 Feb;211(2):495-502
pubmed: 30591514
J Exp Bot. 2017 Jul 20;68(16):4545-4557
pubmed: 28981780
J Integr Plant Biol. 2011 Feb;53(2):120-35
pubmed: 21205189
Curr Opin Biotechnol. 2006 Apr;17(2):155-60
pubmed: 16504497
Alcohol Res Health. 2008;31(1):49-59
pubmed: 23584751
PLoS One. 2014 Feb 28;9(2):e90346
pubmed: 24587335
Plant Physiol Biochem. 2011 May;49(5):557-64
pubmed: 21411332
Nat Commun. 2013;4:2320
pubmed: 23982223
Biostatistics. 2017 Apr 1;18(2):275-294
pubmed: 27756721
Genetics. 2020 May;215(1):267-284
pubmed: 32205398
Front Plant Sci. 2020 Mar 26;11:300
pubmed: 32273877
Science. 2009 Jan 30;323(5914):573
pubmed: 19179503
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11823-8
pubmed: 26351684
BMC Genomics. 2014 Mar 05;15:179
pubmed: 24597475
Sci Rep. 2017 Jul 4;7(1):4616
pubmed: 28676627
Genesis. 2015 Aug;53(8):474-85
pubmed: 26201819
Bioinformatics. 2012 Sep 15;28(18):2397-9
pubmed: 22796960
G3 (Bethesda). 2021 Apr 15;11(4):
pubmed: 33681979
Nat Methods. 2014 Apr;11(4):407-9
pubmed: 24531419
Heredity (Edinb). 1992 Oct;69(4):315-24
pubmed: 16718932
PLoS One. 2014 Aug 14;9(8):e105352
pubmed: 25122453
Front Plant Sci. 2013 Jun 26;4:223
pubmed: 23805151
Front Plant Sci. 2013 May 03;4:107
pubmed: 23653628
BMC Plant Biol. 2017 Jul 11;17(1):123
pubmed: 28697783
Plant J. 2020 Jul;103(1):21-31
pubmed: 32053236
J Dairy Sci. 2008 Nov;91(11):4414-23
pubmed: 18946147
Genetics. 2016 Sep;204(1):21-33
pubmed: 27356613
Genetics. 2017 Jun;206(2):573-585
pubmed: 28592497
Genetics. 2021 Aug 26;219(1):
pubmed: 34849911

Auteurs

J Lucas Boatwright (JL)

Advanced Plant Technology, Clemson University, Clemson, SC, United States.
Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States.

Sirjan Sapkota (S)

Advanced Plant Technology, Clemson University, Clemson, SC, United States.

Matthew Myers (M)

Advanced Plant Technology, Clemson University, Clemson, SC, United States.

Neeraj Kumar (N)

Advanced Plant Technology, Clemson University, Clemson, SC, United States.
Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States.

Alex Cox (A)

Advanced Plant Technology, Clemson University, Clemson, SC, United States.

Kathleen E Jordan (KE)

Advanced Plant Technology, Clemson University, Clemson, SC, United States.

Stephen Kresovich (S)

Advanced Plant Technology, Clemson University, Clemson, SC, United States.
Feed the Future Innovation Lab for Crop Improvement, Cornell University, Ithaca, NY, United States.

Classifications MeSH