In silico characterization of fructosyl peptide oxidase properties from Eupenicillium terrenum.


Journal

Journal of molecular recognition : JMR
ISSN: 1099-1352
Titre abrégé: J Mol Recognit
Pays: England
ID NLM: 9004580

Informations de publication

Date de publication:
11 2022
Historique:
revised: 23 05 2022
received: 06 04 2022
accepted: 01 06 2022
pubmed: 4 6 2022
medline: 15 10 2022
entrez: 3 6 2022
Statut: ppublish

Résumé

Fructosyl peptide oxidase (FPOX) enzyme from Eupenicillium terrenum has a high potential to be applied as a diagnostic enzyme. The aim of the present study is the characterization of FPOX from E. terrenum using different bioinformatics tools. The computational prediction of the RNA and protein secondary structures of FPOX, solubility profile in Escherichia coli, stability, domains, and functional properties were performed. In the FPOX protein, six motifs were detected. The d-amino acid oxidase motif was found as the most important motif that is a FAD-dependent oxidoreductase. The cysteines including 97, 154, 234, 280, and 360 showed a lower score than -10 that have a low possibility for participitation in the formation of the SS bond. The 56.52% of FPOX amino acids are nonpolar. Random coils are dominant in the FPOX sequence, followed by alpha-helix and extended strand. The fpox gene is capable of generating a stable RNA secondary structure (-423.90 kcal/mol) in E. coli. FPOX has a large number of hydrophobic amino acids. FPOX showed a low solubility in E. coli which has several aggregation-prone sites in its 3-D structure. According to the scores, the best mutation candidate for increasing solubility was the conversion of methionine 302 to arginine. The melting temperature of FPOX based on its amino acid sequence was 55°C to 65°C. The amounts of thermodynamic parameters for the FPOX enzyme were -137.4 kcal/mol, -3.59 kcal/(mol K), and -6.8 kcal/mol for standard folding enthalpy, heat capacity, and folding free energy, respectively. In conclusion, the in silico study of proteins can provide a valuable method for better understanding the protein properties and functions for use in our purposes.

Identifiants

pubmed: 35657361
doi: 10.1002/jmr.2980
doi:

Substances chimiques

Amino Acids 0
Peptides 0
Flavin-Adenine Dinucleotide 146-14-5
RNA 63231-63-0
Arginine 94ZLA3W45F
Methionine AE28F7PNPL
Amino Acid Oxidoreductases EC 1.4.-
fructosyl-peptide oxidase EC 1.5.3.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2980

Informations de copyright

© 2022 John Wiley & Sons Ltd.

Références

Bunn HF, Gabbay KH, Gallop PM. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science. 1978;200(4337):21-27.
Gupta S, Jain U, Chauhan N. Laboratory diagnosis of HbA1c: a review. J Nanomed Res. 2017;5(4):00120.
Jaisson S, Desmons A, Renard B, Chevelle B, Leroy N, Gillery P. Analytical performances of a new enzymatic assay for hemoglobin A1c. Clin Chim Acta. 2014;434:48-52.
Xing K, Gan W, Jia M, Gao F, Gong W. Expression, purification, crystallization and preliminary X-ray diffraction analysis of EtFPOX from Eupenicillium terrenum sp. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013;69(6):666-668.
Hirokawa K, Gomi K, Kajiyama N. Molecular cloning and expression of novel fructosyl peptide oxidases and their application for the measurement of glycated protein. Biochem Biophys Res Commun. 2003;311(1):104-111.
Gan W, Gao F, Xing K, Jia M, Liu H, Gong W. Structural basis of the substrate specificity of the FPOD/FAOD family revealed by fructosyl peptide oxidase from Eupenicillium terrenum. Acta Crystallogr Sect F: Struct Biol Commun. 2015;71(4):381-387.
Shahbazmohammadi H, Sardari S, Lari A, Omidinia E. Engineering an efficient mutant of Eupenicillium terrenum fructosyl peptide oxidase for the specific determination of hemoglobin A1c. Appl Microbiol Biotechnol. 2019;103(4):1725-1735.
Hirokawa K, Nakamura K, Kajiyama N. Enzymes used for the determination of HbA1C. FEMS Microbiol Lett. 2004;235(1):157-162.
Rahmatabadi SS, Sadeghian I, Nezafat N, et al. In silico investigation of pullulanase enzymes from various Bacillus species. Curr Proteom. 2017;14(3):175-185.
Felden B. RNA structure: experimental analysis. Curr Opin Microbiol. 2007;10(3):286-291.
Jahn TR, Radford SE. Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys. 2008;469(1):100-117.
Brown LR. Commercial challenges of protein drug delivery. Expert Opin Drug Deliv. 2005;2(1):29-42.
Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov. 2005;4(4):298-306.
Salmaso S, Bersani S, Semenzato A, Caliceti P. Nanotechnologies in protein delivery. J Nanosci Nanotechnol. 2006;6(9-10):2736-2753.
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65(1):1-43.
Castillo V, Graña-Montes R, Sabate R, Ventura S. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes. Biotechnol J. 2011;6(6):674-685.
Belli M, Ramazzotti M, Chiti F. Prediction of amyloid aggregation in vivo. EMBO Rep. 2011;12(7):657-663.
Madeira F, Park YM, Lee J, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636-W641.
Cheng J, Saigo H, Baldi P. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching, proteins: structure. Funct Bioinform. 2006;62(3):617-629.
McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16(4):404-405.
Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics. 1995;11(6):681-684.
Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9(1):133-148.
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105-132.
Agostini F, Cirillo D, Livi CM, Ponti RD, Tartaglia GG. ccSOL omics: a webserver for large-scale prediction of endogenous and heterologous solubility in E. coli. Bioinformatics. 2014;30(20):2975-2977.
Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein-sol: a web tool for predicting protein solubility from sequence. Bioinformatics. 2017;33(19):3098-3100.
Magnan CN, Randall A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics. 2009;25(17):2200-2207.
Smialowski P, Doose G, Torkler P, Kaufmann S, Frishman D. PROSO II-a new method for protein solubility prediction. FEBS J. 2012;279(12):2192-2200.
Niwa T, Ying B-W, Saito K, et al. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc Natl Acad Sci. 2009;106(11):4201-4206.
Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res. 2015;43(W1):W306-W313.
De Groot NS, Aviles FX, Vendrell J, Ventura S. Mutagenesis of the central hydrophobic cluster in Aβ42 Alzheimer's peptide: side-chain properties correlate with aggregation propensities. FEBS J. 2006;273(3):658-668.
Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods. 2021;1(3):100014.
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12(1):7-8.
Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43(W1):W174-W181.
Pucci F, Rooman M. Towards an accurate prediction of the thermal stability of homologous proteins. J Biomol Struct Dyn. 2016;34(5):1132-1142.
Pucci F, Rooman M. Stability curve prediction of homologous proteins using temperature-dependent statistical potentials. PLoS Comput Biol. 2014;10(7):e1003689.
Ku T, Lu P, Chan C, et al. Predicting melting temperature directly from protein sequences. Comput Biol Chem. 2009;33(6):445-450.
Idicula-Thomas S, Balaji PV. Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci. 2005;14(3):582-592.
Clark EDB. Refolding of recombinant proteins. Curr Opin Biotechnol. 1998;9(2):157-163.
Pramanik K, Ghosh PK, Ray S, Sarkar A, Mitra S, Maiti TK. An in silico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa. J Genetic Eng Biotechnol. 2017;15(2):527-537.
Chang CCH, Song J, Tey BT, Ramanan RN. Bioinformatics approaches for improved recombinant protein production in Escherichia coli: protein solubility prediction. Brief Bioinform. 2014;15(6):953-962.
Musil M, Konegger H, Hon J, Bednar D, Damborsky J. Computational design of stable and soluble biocatalysts. Acs Catal. 2018;9(2):1033-1054.
Cheng X, Xiao X, Wu ZC, Wang P, Lin WZ. Swfoldrate: predicting protein folding rates from amino acid sequence with sliding window method. Proteins Struct Funct Bioinform. 2013;81(1):140-148.
Packiam KAR, Ramanan RN, Ooi CW, Krishnaswamy L, Tey BT. Stepwise optimization of recombinant protein production in Escherichia coli utilizing computational and experimental approaches. Appl Microbiol Biotechnol. 2020;104(8):3253-3266.
Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol. 2018;102(4):1545-1556.
Zhang W, Lu J, Zhang S, Liu L, Pang X, Lv J. Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microb Cell Fact. 2018;17(1):1-12.
Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2003;60(5):523-533.
Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol. 2004;22(11):1399-1408.
Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Bioinform. 2000;41(3):415-427.
Linding R, Russell RB, Neduva V, Gibson TJ. GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res. 2003;31(13):3701-3708.
Costantini S, Colonna G, Facchiano AM. Amino acid propensities for secondary structures are influenced by the protein structural class. Biochem Biophys Res Commun. 2006;342(2):441-451.
Basit A, Akhtar MW. Truncation of the processive Cel5A of Thermotoga maritima results in soluble expression and several fold increase in activity. Biotechnol Bioeng. 2018;115(7):1675-1684.
Goh C-S, Lan N, Douglas SM, et al. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J Mol Biol. 2004;336(1):115-130.
Luan C-H, Qiu S, Finley JB, et al. High-throughput expression of C. elegans proteins. Genome Res. 2004;14(10b):2102-2110.
Malissard M, Berger EG. Improving solubility of catalytic domain of human β-1, 4-galactosyltransferase 1 through rationally designed amino acid replacements. Eur J Biochem. 2001;268(15):4352-4358.
Murby M, Samuelsson E, Nguyen TN, et al. Hydrophobicity engineering to increase solubility and stability of a recombinant protein from respiratory syncytial virus. Eur J Biochem. 1995;230(1):38-44.
Soto C, Castaño EM, Frangione B, Inestrosa NC. The α-helical to β-Strand transition in the amino-terminal fragment of the amyloid β-peptide modulates amyloid formation*. J Biol Chem. 1995;270(7):3063-3067.
Teschke CM. Aggregation and assembly of phage P22 temperature-sensitive coat protein mutants in vitro mimic the in vivo phenotype. Biochemistry. 1999;38(10):2873-2881.
Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature. 2003;424(6950):805-808.
Jeong SH. Analytical methods and formulation factors to enhance protein stability in solution. Arch Pharm Res. 2012;35(11):1871-1886.
Calamai M, Taddei N, Stefani M, Ramponi G, Chiti F. Relative influence of hydrophobicity and net charge in the aggregation of two homologous proteins. Biochemistry. 2003;42(51):15078-15083.
Fields GB, Alonso DO, Stigter D, Dill KA. Theory for the aggregation of proteins and copolymers. J Phys Chem. 1992;96(10):3974-3981.
Stigter D, Dill KA. Theory for protein solubilities. Fluid Phase Equilibria. 1993;82:237-249.
Istrail S, Schwartz R, King J. Lattice simulations of aggregation funnels for protein folding. J Comput Biol. 1999;6(2):143-162.
Cozzone AJ. Proteins: Fundamental Chemical Properties, Encyclopedia of Life Sciences. Hoboken, NJ: John Wiley & Sons Ltd. 2002:1-10.
Mitaku S, Hirokawa T, Tsuji T. Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. Bioinformatics. 2002;18(4):608-616.
Dunker AK, Lawson JD, Brown CJ, et al. Intrinsically disordered protein. J Mol Graph Model. 2001;19(1):26-59.
Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradović Z. Intrinsic disorder and protein function. Biochemistry. 2002;41(21):6573-6582.
Chou P, Fasman GD. Amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 2009;47:45.
Levitt M. Conformational preferences of amino acids in globular proteins. Biochemistry. 1978;17(20):4277-4285.
Franzosa EA, Lynagh KJ, Xia Y. Structural correlates of protein melting temperature. in Experimental Standard Conditions of Enzyme Characterizations. Ruedesheim/Rhein, Germany: Beilstein-Institut; 2009:99-106.
Pucci F, Kwasigroch JM, Rooman M. SCooP: an accurate and fast predictor of protein stability curves as a function of temperature. Bioinformatics. 2017;33(21):3415-3422.
Sánchez R, Pieper U, Melo F, et al. Protein structure modeling for structural genomics. Nat Struct Biol. 2000;7(11):986-990.
Lo H-F, Chen Y-H, Hsiao N-W, et al. Stabilization of a truncated Bacillus sp. strain TS-23 α-amylase by replacing histidine-436 with aspartate. World J Microbiol Biotechnol. 2005;21(4):411-416.
Trotta E. On the normalization of the minimum free energy of RNAs by sequence length. PloS One. 2014;9(11):e113380.
Balkhi SS, Hojati Z. The effects of self-cleavage Intein-ELK16 tag in the transcript steric hindrance of IFN. Indian J Clin Biochem. 2021;36(2):159-166.
Lorenz R, Bernhart SH, Zu Siederdissen CH, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6(1):1-14.
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics. 2004;20(17):2911-2917.

Auteurs

Seyyed Soheil Rahmatabadi (SS)

Department Biotechnolgy, Applied Razi Biotechnology, Kermanshah, Iran.

Keivan Mobini (K)

Department of Hematology, Faculty of Allied Medical Science, Bushehr University of Medical Sciences, Bushehr, Iran.

Soudabeh Askari (S)

Department Biotechnolgy, Applied Razi Biotechnology, Kermanshah, Iran.

Javad Najafian (J)

Department of Biology, Faculty of Basic Science, University of Mazandaran, Baboulsar, Iran.

Keyvan Karami (K)

Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Bijan Soleymani (B)

Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Ali Mostafaie (A)

Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Articles similaires

Humans RNA, Circular Exosomes Cell Proliferation Epithelial-Mesenchymal Transition
Female Biofilms Animals Lactobacillus Mice
Animals Huntington Disease Mitochondria Neurons Mice
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Classifications MeSH