In silico analyses of acetylcholinesterase (AChE) and its genetic variants in interaction with the anti-Alzheimer drug Rivastigmine.


Journal

Journal of cellular biochemistry
ISSN: 1097-4644
Titre abrégé: J Cell Biochem
Pays: United States
ID NLM: 8205768

Informations de publication

Date de publication:
07 2022
Historique:
received: 13 04 2022
accepted: 14 05 2022
pubmed: 2 6 2022
medline: 20 7 2022
entrez: 1 6 2022
Statut: ppublish

Résumé

Alzheimer's disease (AD) is the leading cause of dementia worldwide. Despite causing great social and economic impact, there is currently no cure for AD. The most effective therapy to manage AD symptoms is based on acetylcholinesterase inhibitors (AChEi), from which rivastigmine presented numerous benefits. However, mutations in AChE, which affect approximately 5% of the population, can modify protein structure and function, changing the individual response to Alzheimer's treatment. In this study, we performed computer simulations of AChE wild type and variants R34Q, P135A, V333E, and H353N, identified by one or more genome-wide association studies, to evaluate their effects on protein structure and interaction with rivastigmine. The functional effects of AChE variants were predicted using eight machine learning algorithms, while the evolutionary conservation of AChE residues was analyzed using the ConSurf server. Autodock4.2.6 was used to predict the binding modes for the hAChE-rivastigmine complex, which is still unknown. Molecular dynamics (MD) simulations were performed in triplicates for the AChE wild type and mutants using the GROMACS packages. Among the analyzed variants, P135A was classified as deleterious by all the functional prediction algorithms, in addition to occurring at highly conserved positions, which may have harmful consequences on protein function. The molecular docking results suggested that rivastigmine interacts with hAChE at the upper active-site gorge, which was further confirmed by MD simulations. Our MD findings also suggested that the complex hAChE-rivastigmine remains stable over time. The essential dynamics revealed flexibility alterations at the active-site gorge upon mutations P135A, V333E, and H353N, which may lead to strong and nonintuitive consequences to hAChE binding. Nonetheless, similar binding affinities were registered in the MMPBSA analysis for the hAChE wild type and variants when complexed to rivastigmine. Finally, our findings indicated that the rivastigmine binding to hAChE is an energetically favorable process mainly driven by negatively charged amino acids.

Identifiants

pubmed: 35644025
doi: 10.1002/jcb.30277
doi:

Substances chimiques

Acetylcholinesterase EC 3.1.1.7
Rivastigmine PKI06M3IW0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1259-1277

Subventions

Organisme : Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Organisme : Financiadora de Estudos e Projetos (FINEP)
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Organisme : Universidade Federal do Estado do Rio de Janeiro
Organisme : NVIDIA Corporation

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Alzheimer's Association. (2021). Global Prevalence. Accessed March 14, 2022. https://www.alz.org/aaic/releases_2021/global-prevalence.asp
Mesulam M, Guillozet A, Shaw P, Quinn B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol Dis. 2002;9(1):88-93. doi:10.1006/nbdi.2001.0462
Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11(3):315. doi:10.2174/1570159X11311030006
Feldman HH, Lane R. Rivastigmine: a placebo controlled trial of twice daily and three times daily regimens in patients with Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2007;78(10):1056-1063. doi:10.1136/jnnp.2006.099424
Dou KX, Tan MS, Tan CC, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer's disease: a network meta-analysis of 41 randomized controlled trials. Alzheimer's Res Ther. 2018;10(1):1-10. doi:10.1186/s13195-018-0457-9
Khoury R, Rajamanickam J, Grossberg GT. An update on the safety of current therapies for Alzheimer's disease: focus on rivastigmine. Ther Adv Drug Saf. 2018;9(3):171-178. doi:10.1177/2042098617750555
Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-311. doi:10.1093/nar/29.1.308
Wang J, Pang GSY, Chong SS, Lee CGL. SNP web resources and their potential applications in personalized medicine. Curr Drug Metab. 2012;13(7):978-990.
Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. Bioinformatics and variability in drug response: a protein structural perspective. J R Soc Interface. 2012;9:1409-1437. doi:10.1098/rsif.2011.0843
Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genomics Proteomics Bioinformatics. 2016;14(5):298-313. doi:10.1016/j.gpb.2016.03.008
Kumar SU, Kumar DT, Mandal PD, et al. Comprehensive in silico screening and molecular dynamics studies of missense mutations in Sjogren-Larsson syndrome associated with the ALDH3A2 gene. In: Advances in Protein Chemistry and Structural Biology. Vol. 120. Elsevier Ltd; 2020. doi:10.1016/bs.apcsb.2019.11.004
Mandal RS, Panda S, Das S. In silico prediction of drug resistance due to S247R mutation of Influenza H1N1 neuraminidase protein. J Biomol Struct Dyn. 2018;36(4):966-980. doi:10.1080/07391102.2017.1305295
Nzabonimpa GS, Rasmussen HB, Brunak S, et al. Investigating the impact of missense mutations in hCES1 by in silico structure-based approaches. Drug Metab. Pers Ther. 2016;31(2):97-106. doi:10.1515/dmpt-2015-0034
Kumar DT, Jain N, Kumar U, et al. Molecular dynamics simulations to decipher the structural and functional consequences of pathogenic missense mutations in the galactosylceramidase (GALC) protein causing Krabbe's disease. J Biomol Struct Dyn. 2020;39(5):1795-1810. doi:10.1080/07391102.2020.1742790
Kumar SU, Kumar DT, Siva R, Doss GP, Zayed H. An extensive computational approach to analyze and characterize the functional mutations in the galactose-1-phosphate uridyl transferase (GALT) protein responsible for classical galactosemia. Comput Biol Med. 2020;117:103583. doi:10.1016/j.compbiomed.2019.103583
Kamaraj B, Rajendran V, Sethumadhavan R, Purohit R. In-silico screening of cancer associated mutation on PLK1 protein and its structural consequences. J Mol Model. 2013;19(12):5587-5599. doi:10.1007/s00894-013-2044-0
Kumar A, Rajendran V, Sethumadhavan R, Purohit R. Identifying novel oncogenes: a machine learning approach. Interdiscip Sci Comput Life Sci. 2013;5(4):241-246. doi:10.1007/s12539-013-0151-3
Rajendran V, Gopalakrishnan C, Purohit R. Impact of point mutation P29S in RAC1 on tumorigenesis. Tumor Biol. 2016;37(11):15293-15304. doi:10.1007/s13277-016-5329-y
Singh R, Bhardwaj VK, Sharma J, Das P, Purohit R. Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics. 2021;113(1):707-715. doi:10.1016/j.ygeno.2020.10.001
Bonet LFS, Loureiro JP, Pereira GRC, Da Silva ANR, De Mesquita JF. Molecular dynamics and protein frustration analysis of human fused in Sarcoma protein variants in Amyotrophic Lateral Sclerosis type 6: an in silico approach. PLoS One. 2021;16(9):e0258061. doi:10.1371/journal.pone.0258061
Pereira GRC, Tellini GHAS, De Mesquita JF. In silico analysis of PFN1 related to amyotrophic lateral sclerosis. PLoS One. 2019;14(6):e0215723.
Bateman A, Martin MJ, O′Donovan C, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158-D169. doi:10.1093/nar/gkw1099
Rose PW, Prlić A, Altunkaya A, et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017;45(Database):D271-D281. doi:10.1093/nar/gkw1000
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202-D1213. doi:10.1093/nar/gkv951
Adzhubei I, Schmidt S, Peshkin L, et al. PolyPhen-2: prediction of functional effects of human nsSNPs. Curr Protoc Hum Genet. 2010. doi:10.1017/CBO9781107415324.004
Capriotti E, Fariselli P. PhD-SNPg: A webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Res. 2017;45(W1):W247-W252. doi:10.1093/nar/gkx369
Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40(Web Server issue):W452-W457. doi:10.1093/nar/gks539
Capriotti E, Calabrese R, Fariselli P, Martelli PL, Altman RB, Casadio R. WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics. 2013;14(Suppl 3):S6. doi:10.1186/1471-2164-14-S3-S6
Bao L, Zhou M, Cui Y. nsSNPAnalyzer: Identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res. 2005;33(SUPPL. 2):480-482. doi:10.1093/nar/gki372
Solayman M, Saleh MA, Paul S, Khalil MI, Gan SH. In silico analysis of nonsynonymous single nucleotide polymorphisms of the human adiponectin receptor 2 (ADIPOR2) gene. Comput Biol Chem. 2017;68:175-185. doi:10.1016/j.compbiolchem.2017.03.005
Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33(Web Server):W306-W310. doi:10.1093/nar/gki375
De Baets G, Van Durme J, Reumers J, et al. SNP effect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res. 2012;40(Database):D935-D939. doi:10.1093/nar/gkr996
Ashkenazy H, Abadi S, Martz E, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44(May):344-350. doi:10.1093/nar/gkw408
Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33(7):2302-2309. doi:10.1093/nar/gki524
Tatusova TA, Madden TL. BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett. 1999;174(2):247-250. doi:10.1111/j.1574-6968.1999.tb13575.x
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791. doi:10.1002/jcc
Bietz S, Urbaczek S, Schulz B, Rarey M. Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes. J Cheminf. 2014;6(1):1-12. doi:10.1186/1758-2946-6-12
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminf. 2012;4(17):1-17. https://papers3//publication/uuid/4AA59FE8-CBBC-4E34-AE0A-E0A1EB7B42AF
Gonçalves LM, Trevisol ETV, de Azevedo Abrahim Vieira B, De Mesquita JF. Trehalose synthesis inhibitor: a molecular in silico drug design. J Cell Biochem. 2020;121(2):1114-1125. doi:10.1002/jcb.29347
Sodero ACR, Abrahim-Vieira B, Torres PHM, et al. Insights into cytochrome bc1 complex binding mode of antimalarial 2-hydroxy-1,4-naphthoquinones through molecular modelling. Mem Inst Oswaldo Cruz. 2017;112(4):299-308. doi:10.1590/0074-02760160417
Stierand K, Rarey M. Drawing the PDB: protein-ligand complexes in two dimensions. ACS Med Chem Lett. 2010;1(9):540-545. doi:10.1021/ml100164p
Pereira GRC, Tavares GDB, De Freitas MC, De Mesquita JF. In silico analysis of the tryptophan hydroxylase 2 (TPH2) protein variants related to psychiatric disorders. PLoS One. 2020;15(3):1-23. doi:10.1371/journal.pone.0229730
Pereira GRC, Vieira BdeAA, Mesquita JFDe. Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis. PLoS One. 2021;1(0247841):1-27. doi:10.1371/journal.pone.0247841
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics. 1996;14:33-38. doi:10.1016/0263-7855(96)00018-5
Hess B, Spoel Dvander, Lindahl E. Gromacs User Manual. Department of Biophysical Chemistry; 2014. doi:10.1006/imms.1993.1022
Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem. 2011;32:2359-2368. doi:10.1002/jcc
SAPAY N, TIELEMAN DP. Combination of the CHARMM27 force field with united-atom lipid force fields. J Comput Chem. 2011;32:1400-1410. doi:10.1002/jcc
Machado TR, Ribeiro MMJ, Sodero ACR, et al. Evaluation of chloroquine and hydroxychloroquine as ACE-2 inhibitors by in silico approaches: cardiac arrhythmia cause? J Mol Struct. 2021:1244. doi:10.1016/j.molstruc.2021.130946
Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics. 2006;22(21):2695-2696. doi:10.1093/bioinformatics/btl461
Papaleo E, Mereghetti P, Fantucci P, Grandori R, De Gioia L. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case. J Mol Graph Model. 2009;27(8):889-899. doi:10.1016/j.jmgm.2009.01.006
Kumari R, Kumar R, Lynn A. G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951-1962. doi:10.1021/ci500020m
Chen VP, Luk WKW, Chan WKB, et al. Molecular assembly and biosynthesis of acetylcholinesterase in brain and muscle: the roles of t-peptide, FHB domain, and N-linked glycosylation. Front Mol Neurosci. 2011;4(October):1-8. doi:10.3389/fnmol.2011.00036
Johnson JL, Cusack B, Hughes TF, et al. Inhibitors tethered near the acetylcholinesterase active site serve as molecular rulers of the peripheral and acylation sites. J Biol Chem. 2003;278(40):38948-38955. doi:10.1074/jbc.M304797200
Rosenberry TL, Brazzolotto X, MacDonald IR, et al. Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study. Molecules. 2017;22(12). doi:10.3390/molecules22122098
Gorfe AA, Chang CEA, Ivanov I, McCammon JA. Dynamics of the acetylcholinesterase tetramer. Biophys J. 2008;94(4):1144-1154. doi:10.1529/biophysj.107.117879
Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: from 3D structure to function. Chemico-Biological Interactions. 2010;187(1-3):10-22. doi:10.1016/j.cbi.2010.01.042
Nguyen-Huu T, Dobbertin A, Barbier J, et al. Cholinesterases and the resistance of the mouse diaphragm to the effect of tubocurarine. Anesthesiology. 2005;103(4):788-795. doi:10.1097/00000542-200510000-00017
Bar-On P, Millard CB, Harel M, et al. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry. 2002;41(11):3555-3564.
Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol. 2018;9:1-16. doi:10.3389/fphar.2018.00923
Pereira GRC, Da Silva ANR, Do Nascimento SS, De Mesquita JF. In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. J Cell Biochem. 2019;120(3):3583-3598. doi:10.1002/jcb.27636
Ancien F, Pucci F, Godfroid M, Rooman M. Prediction and interpretation of deleterious coding variants in terms of protein structural stability. Sci Rep. 2018;8(1):1-11. doi:10.1038/s41598-018-22531-2
Ow SY, Dunstan DE. A brief overview of amyloids and Alzheimer's disease. Prot Sci. 2014;23(10):1315-1331. doi:10.1002/pro.2524
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7(10). doi:10.1371/journal.pone.0046688
Wiesner J, Kříz Z, Kuca K, Jun D, Koca J. Acetylcholinesterases-the structural similarities and differences. J Enzyme Inhib Med Chem. 2007;22(4):417-424. doi:10.1080/14756360701421294
Illergård K, Ardell DH, Elofsson A. Structure is three to ten times more conserved than sequence-a study of structural response in protein cores. Proteins Struct Funct Bioinf. 2009;77(3):499-508. doi:10.1002/prot.22458
Onor ML, Trevisiol M, Aguglia E. Rivastigmine in the treatment of Alzheimer's disease: an update. Clin Interv Aging. 2007;2(1):17-32. doi:10.2147/ciia.2007.2.1.17
Baskaran KP, Arumugam A, Kandasamy R, Alagarsamy S. Insilico method for prediction of maximum binding affinity and ligand-protein interaction studies on Alzheimer's disease. Int J Res Granthaalayah. 2020;8(11):362-370. doi:10.29121/granthaalayah.v8.i11.2020.2472
Ali MR, Sadoqi M, Møller SG, Boutajangout A, Mezei M. Assessing the binding of cholinesterase inhibitors by docking and molecular dynamics studies. J Mol Graph Model. 2017;76. doi:10.1016/j.jmgm.2017.06.027
Elmaki NM, Al Sadawi IA, Hermann A, Gbaj AM. Potential molecular docking of four acetylcholinesterase inhibitors. Drug Design Intellect Properties Int J. 2018;2(3). doi:10.32474/DDIPIJ.2018.02.000136
Hollingsworth SA, Dror RO. Molecular Dynamics simulation for all. Neuron. 2018;99(6):1129-1143. doi:10.1016/j.neuron.2018.08.011
Agrahari AK, Sneha P, George Priya Doss C, Siva R, Zayed H. A profound computational study to prioritize the disease-causing mutations in PRPS1 gene. Metab Brain Dis. 2018;33(2):589-600. doi:10.1007/s11011-017-0121-2
Martínez L. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One. 2015;10(3):e0119264. doi:10.1371/journal.pone.0119264
Liu K, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study. J Chem Inf Model. 2017;57(10):2514-2522. doi:10.1021/acs.jcim.7b00412
Lobanov MY, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an indicator of protein structure compactness. Mol Biol. 2008;42(4):623-628. doi:10.1134/S0026893308040195
Kumar CV, Swetha RG, Anbarasu A, Ramaiah S. Computational analysis reveals the association of threonine 118 methionine mutation in PMP22 resulting in CMT-1A. Adv Bioinformatics. 2014;2014(502618):10. doi:10.1155/2014/502618
Saravanaraman P, Chinnadurai RK, Boopathy R. A new role for the nonpathogenic Nonsynonymous single-nucleotide polymorphisms of acetylcholinesterase in the treatment of Alzheimer's disease: a computational study. J Comput Biol. 2014;21(8):632-647. doi:10.1089/cmb.2014.0005
Hubbard RE, Kamran Haider M. Hydrogen bonds in proteins: role and strength. Encyclopedia of Life Sciences. 2010;(February). doi:10.1002/9780470015902.a0003011.pub2
Dhanik A, McMurray JS, Kavraki LE. Binding modes of peptidomimetics designed to inhibit STAT3. PLoS One. 2012;7(12):34-39. doi:10.1371/journal.pone.0051603
Liu F, Ma Z, Sang J, Lu F. Edaravone inhibits the conformational transition of amyloid-β42: insights from molecular dynamics simulations. J Biomol Struct Dyn. 2020;38(8):2377-2388. doi:10.1080/07391102.2019.1632225
Ahmad B, Batool M, Ain Qul, Kim MS, Choi S. Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations. Int J Mol Sci. 2021;22(17):9124. doi:10.3390/ijms22179124
Landon MR, Amaro RE, Baron R, et al. Novel druggable hot spots in avian influenza neuraminidase H5N1 revealed by computational solvent mapping of a reduced and representative receptor ensemble. Chem Biol Drug Des. 2008;71(2):106-116. doi:10.1111/j.1747-0285.2007.00614.x
Magar P, Parravicini O, Štěpánková Š, et al. Novel sulfonamide-based carbamates as selective inhibitors of BChE. Int J Mol Sci. 2021;22(17). doi:10.3390/ijms22179447
Santos LHS, Ferreira RS, Caffarena ER. Integrating molecular docking and molecular dynamics simulations. Methods Mol Biol. 2019;2053:13-34. doi:10.1007/978-1-4939-9752-7_2
David CC, Jacobs DJ. Principal component analysis: a method for determining the essential dynamics of proteins article. Proteins. 2014;1084. doi:10.1007/978-1-62703-658-0
Oliveira CCSDe, Pereira GRC, Alcantara JYS, et al. In silico analysis of the V66M variant of human BDNF in psychiatric disorders: an approach to precision medicine. PLoS One. 2019;14(4):e0215508.
Dehury B, Raina V, Misra N, Suar M. Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: a molecular dynamics simulations study. J Biomol Struct Dyn. 2021;39(18):7231-7245. doi:10.1080/07391102.2020.1802348
Forrey C, Douglas JF, Gilson MK. The fundamental role of flexibility on the strength of molecular binding. Soft Matter. 2012;8(23):6385-6392. doi:10.1039/c2sm25160d
Wereszczynski J, McCammon JA. Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition. Q Rev Biophys. 2012;45(1):1-25. doi:10.1017/S0033583511000096
Wan S, Bhati AP, Zasada SJ, Coveney PV. Rapid, accurate, precise and reproducible ligand-protein binding free energy prediction: binding free energy prediction. Interface Focus. 2020;10(6). doi:10.1098/rsfs.2020.0007rsfs20200007
Mohan RR, Wilson M, Gorham RD, et al. Virtual screening of chemical compounds for discovery of complement C3 ligands. ACS Omega. 2018;3(6):6427-6438. doi:10.1021/acsomega.8b00606
Poongavanam V, Olsen JMH, Kongsted J. Binding free energy based structural dynamics analysis of HIV-1 RT RNase H-inhibitor complexes. Integrative. Biology (United Kingdom). 2014;6(11):1010-1022. doi:10.1039/c4ib00111g
Zhou HX, Pang X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev. 2018;118(4):1691-1741. doi:10.1021/acs.chemrev.7b00305
Mihiri Shashikala HB, Chakravorty A, Alexov E. Modeling electrostatic force in protein-protein recognition. Front Mol Biosci. 2019;6(SEP):1-11. doi:10.3389/fmolb.2019.00094

Auteurs

Gabriel Rodrigues Coutinho Pereira (GRC)

Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, Brazil.

Lucas Machado Gonçalves (LM)

Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, Brazil.

Bárbara de Azevedo Abrahim-Vieira (BA)

Molecular modeling and QSAR Laboratory, Federal University of Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil.

Joelma Freire De Mesquita (JF)

Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro, Brazil.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH