Association of Serum Neurofilament Light Chain With Inner Retinal Layer Thinning in Multiple Sclerosis.


Journal

Neurology
ISSN: 1526-632X
Titre abrégé: Neurology
Pays: United States
ID NLM: 0401060

Informations de publication

Date de publication:
16 08 2022
Historique:
received: 15 11 2021
accepted: 11 04 2022
pubmed: 27 5 2022
medline: 14 10 2022
entrez: 26 5 2022
Statut: ppublish

Résumé

Serum neurofilament light chain (sNfL) and optical coherence tomography (OCT)-derived retinal measures (including peripapillary retinal nerve fiber layer [pRNFL] and macular ganglion cell layer/inner plexiform layer [GCIPL] thickness) have been proposed as biomarkers of neurodegeneration in multiple sclerosis (MS). However, studies evaluating the associations between sNfL and OCT-derived retinal measures in MS are limited. In this retrospective analysis of a longitudinal, observational, single-center cohort study, sNfL levels were measured in people with MS and healthy controls (HCs) using single molecule array. Participants with MS were followed with serial OCT for a median follow-up of 4.5 years. Eyes with optic neuritis (ON) within 6 months of baseline OCT or ON during follow-up were excluded. Age-normative cutoffs of sNfL were derived using the HC data, and MS participants with sNfL greater than the 97.5th percentile for age were classified as having elevated sNfL (sNfL-E). Analyses were performed with mixed-effects linear regression models and adjusted for age, sex, race, and history of ON. A total of 130 HCs (age: 42.4 ± 14.2 years; 62% female) and 403 people with MS (age: 43.1 ± 12.0 years; 78% female) were included. Elevated sNfL levels were present at baseline in 80 participants with MS (19.9%). At baseline, sNfL-E participants had modestly lower pRNFL (-3.03 ± 1.50 μm; Elevated baseline sNfL is associated with accelerated rates of retinal neuroaxonal loss in relapsing-remitting MS, independent of overt ON, but may be less reflective of retinal neurodegeneration in progressive MS.

Sections du résumé

BACKGROUND AND OBJECTIVES
Serum neurofilament light chain (sNfL) and optical coherence tomography (OCT)-derived retinal measures (including peripapillary retinal nerve fiber layer [pRNFL] and macular ganglion cell layer/inner plexiform layer [GCIPL] thickness) have been proposed as biomarkers of neurodegeneration in multiple sclerosis (MS). However, studies evaluating the associations between sNfL and OCT-derived retinal measures in MS are limited.
METHODS
In this retrospective analysis of a longitudinal, observational, single-center cohort study, sNfL levels were measured in people with MS and healthy controls (HCs) using single molecule array. Participants with MS were followed with serial OCT for a median follow-up of 4.5 years. Eyes with optic neuritis (ON) within 6 months of baseline OCT or ON during follow-up were excluded. Age-normative cutoffs of sNfL were derived using the HC data, and MS participants with sNfL greater than the 97.5th percentile for age were classified as having elevated sNfL (sNfL-E). Analyses were performed with mixed-effects linear regression models and adjusted for age, sex, race, and history of ON.
RESULTS
A total of 130 HCs (age: 42.4 ± 14.2 years; 62% female) and 403 people with MS (age: 43.1 ± 12.0 years; 78% female) were included. Elevated sNfL levels were present at baseline in 80 participants with MS (19.9%). At baseline, sNfL-E participants had modestly lower pRNFL (-3.03 ± 1.50 μm;
DISCUSSION
Elevated baseline sNfL is associated with accelerated rates of retinal neuroaxonal loss in relapsing-remitting MS, independent of overt ON, but may be less reflective of retinal neurodegeneration in progressive MS.

Identifiants

pubmed: 35618438
pii: WNL.0000000000200778
doi: 10.1212/WNL.0000000000200778
pmc: PMC9484608
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

e688-e697

Subventions

Organisme : NIMH NIH HHS
ID : K01 MH121582
Pays : United States
Organisme : NINDS NIH HHS
ID : K23 NS117883
Pays : United States
Organisme : NINDS NIH HHS
ID : U01 NS111678
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS082347
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY032284
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022 American Academy of Neurology.

Auteurs

Elias S Sotirchos (ES)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD. ess@jhmi.edu.

Eleni S Vasileiou (ES)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Angeliki G Filippatou (AG)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Kathryn C Fitzgerald (KC)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Matthew D Smith (MD)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Hannah-Noelle Lord (HN)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Grigorios Kalaitzidis (G)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Jeffrey Lambe (J)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Anna Duval (A)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Jerry L Prince (JL)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Ellen M Mowry (EM)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Shiv Saidha (S)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Peter A Calabresi (PA)

From the Departments of Neurology (E.S.S., E.S.V., A.G.F., K.C.F., M.D.S., H.-N.L., G.K., J.L., A.D., E.M.M., S.S., P.A.C.), and Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, MD.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH